精英家教网 > 高中数学 > 题目详情

【题目】已知直线ly=x+mm∈R

I)若以点M2,0)为圆心的圆与直线l相切与点P,且点Py轴上,求该圆的方程;

II)若直线l关于x轴对称的直线为,问直线与抛物线Cx2=4y是否相切?说明理由.

【答案】I

II)当m=1时,直线与抛物线C相切;当时,直线与抛物线C不相切.

【解析】

1)依题意,点P的坐标为(0m

因为圆与直线l相切与点P∴MP⊥l

解得m=2,即点P的坐标为(02

从而圆的半径r==

故所求圆的方程为

2)因为直线l的方程为y=x+m

所以直线的方程为y=xm代入

∴m=1,即直线与抛物线C相切

m≠1时,,即直线与抛物线C不相切

综上,当m=1时,直线与抛物线C相切;

m≠1时,直线与抛物线C不相切.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】202048日零时正式解除离汉通道管控,这标志着封城76天的武汉打开城门了.在疫情防控常态下,武汉市有序复工复产复市,但是仍然不能麻痹大意,仍然要保持警惕,严密防范、慎终如始.为科学合理地做好小区管理工作,结合复工复产复市的实际需要,某小区物业提供了两种小区管理方案,为了了解哪一种方案最为合理有效,物业随机调查了50名男业主和50名女业主,每位业主对两种小区管理方案进行了投票(只能投给一种方案),得到下面的列联表:

方案

方案

男业主

35

15

女业主

25

25

1)分别估计方案获得业主投票的概率;

2)判断能否有95%的把握认为投票选取管理方案与性别有关.

附:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的各项均为正数,其前n项的积为,记.

1)若数列为等比数列,数列为等差数列,求数列的公比.

2)若,且

①求数列的通项公式.

②记,那么数列中是否存在两项,(st均为正偶数,且),使得数列,成等差数列?若存在,求st的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线C的顶点为坐标原点O,对称轴为轴,其准线为.

1)求抛物线C的方程;

2)设直线,对任意的抛物线C上都存在四个点到直线l的距离为,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C)的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.

1)求椭圆C的标准方程;

2)设F为椭圆C的左焦点,T为直线上任意一点,过FTF的垂线交椭圆C于点PQ.

i)证明:OT平分线段PQ(其中O为坐标原点);

ii)当最小时,求点T的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面,底面是直角梯形,其中为棱上的点,且

1)求证:平面

2)求二面角的余弦值;

3)设为棱上的点(不与重合),且直线与平面所成角的正弦值为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数上不具有单调性.

(1)求实数的取值范围;

(2)若的导函数,设,试证明对任意两个不相等正数,不等式恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在多面体中,,四边形和四边形是两个全等的等腰梯形.

(1)求证:四边形为矩形;

(2)若平面平面,求多面体的体积.

查看答案和解析>>

同步练习册答案