精英家教网 > 高中数学 > 题目详情
为两条直线,为两个平面,下列四个命题中,正确的命题是(   )
A.若所成的角相等,则
B.若,则
C.若,则
D.若,则
D

试题分析:A项中两直线还可能相交或异面;B项中两直线还可能相交或异面;C项两平面还可能是相交平面,D项可用过作图或演绎推理得证结论正确
点评:此类题目的求解主要是依据基本的判定定理性质定理来推导,辅以图像分析考虑便能较易的得出结论
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

如图,在正三棱柱ABC-A1B1C1中,AB=2.若二面角C-AB-C1的大小为60°,则异面直线A1B1和BC1所成角的余弦值为
 
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)如图,正三棱柱中,D是BC的中点,

(Ⅰ)求证:;(Ⅱ)求证:;(Ⅲ)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(满分12分)如右图,在正三棱柱ABC—A1B1C1中,AA1=AB,D是AC的中点。

(Ⅰ)求证:B1C//平面A1BD;
(Ⅰ)求二面角A—A1B—D的余弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

直线mn和平面.下列四个命题中,
①若mn,则mn
②若mnmn,则
③若m,则m
④若mm,则m
其中正确命题的个数是(   )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分为12分)
在四棱锥中,底面,,,,的中点.

(I)证明:
(II)证明:平面
(III)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是两条不同的直线,是三个不同的平面,则下列命题中真命题的是(  )
A.若,则B.若 ,则
C.若D.若,则

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图:在底面为直角梯形的四棱锥P-ABCD中,AD‖BC ,∠ABC=90°,PA⊥平面ABCD, PA="3," AD="2," AB=, BC=6.

(1)求证:BD⊥平面PAC
(2)求二面角B-PC-A的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)如图所示,已知六棱锥的底面是正六边形,平面的中点。

(Ⅰ)求证:平面//平面
(Ⅱ)设,当二面角的大小为时,求的值。

查看答案和解析>>

同步练习册答案