【题目】如图,己知圆和双曲线,记与轴正半轴、轴负半轴的公共点分别为、,又记与在第一、第四象限的公共点分别为、.
(1)若,且恰为的左焦点,求的两条渐近线的方程;
(2)若,且,求实数的值;
(3)若恰为的左焦点,求证:在轴上不存在这样的点,使得.
【答案】(1);(2);(2)见解析.
【解析】
(1)由圆的方程求出点坐标,得双曲线的,再计算出后可得渐近线方程;
(2)设,由圆方程与双曲线方程联立,消去后整理,可得,
,由先求出,回代后求得坐标,计算;
(3)由已知得,设,由圆方程与双曲线方程联立,消去后整理,可解得,,求出,从而可得,由,可知满足要求的点不存在.
(1)由题意圆方程为,令得,∴,即,∴,,∴渐近线方程为.
(2)由(1)圆方程为,,
设,由得,(*),
,,
,
所以,即,解得,
方程(*)为,即,,代入双曲线方程得,∵在第一、四象限,∴,,
∴.
(3)由题意,,,,,
设
由得:,,
由得,解得,,
,
所以,
,
,当且仅当三点共线时,等号成立,
∴轴上不存在点,使得.
科目:高中数学 来源: 题型:
【题目】下列四个命题:
函数的最大值为1;
“,”的否定是“”;
若为锐角三角形,则有;
“”是“函数在区间内单调递增”的充分必要条件.
其中错误的个数是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对称轴为坐标轴的椭圆的焦点为,,在上.
(1)求椭圆的方程;
(2)设不过原点的直线与椭圆交于,两点,且直线,,的斜率依次成等比数列,则当的面积为时,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C1的极坐标方程为ρ=4cosθ,直线C2的参数方程为(t为参数).
(1)求曲线C1的直角坐标方程和直线C2的普通方程;
(2)若P(1,0),直线C2与曲线C1相交于A,B两点,求|PA||PB|的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学拟在高一下学期开设游泳选修课,为了了解高一学生喜欢游泳是否与性别有关,该学校对100名高一新生进行了问卷调查,得到如下列联表:
喜欢游泳 | 不喜欢游泳 | 合计 | |
男生 | 10 | ||
女生 | 20 | ||
合计 |
已知在这100人中随机抽取1人抽到喜欢游泳的学生的概率为.
(1)请将上述列联表补充完整;
(2)并判断是否有99.9%的把握认为喜欢游泳与性别有关?并说明你的理由;
(3)已知在被调查的学生中有5名来自甲班,其中3名喜欢游泳,现从这5名学生中随机抽取2人,求恰好有1人喜欢游泳的概率.
下面的临界值表仅供参考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(参考公式:,其中)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】现给出两个条件:①,②,从中选出一个条件补充在下面的问题中,并以此为依据求解问题:(选出一种可行的条件解答,若两个都选,则按第一个解答计分)在中,分别为内角所对的边( ).
(1)求;
(2)若,求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图空间几何体中,与,均为边长为的等边三角形,平面平面,平面平面.
(Ⅰ)求线段的长度.
(Ⅱ)试在平面内作一条直线,使得直线上任意一点与的连线均与平面平行,并给出详细证明;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中, 是抛物线的焦点, 是抛物线上的任意一点,当位于第一象限内时, 外接圆的圆心到抛物线准线的距离为.
(1)求抛物线的方程;
(2)过的直线交抛物线于两点,且,点为轴上一点,且,求点的横坐标的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com