精英家教网 > 高中数学 > 题目详情

【题目】如图,己知圆和双曲线,记轴正半轴、轴负半轴的公共点分别为,又记在第一、第四象限的公共点分别为.

1)若,且恰为的左焦点,求的两条渐近线的方程;

2)若,且,求实数的值;

3)若恰为的左焦点,求证:在轴上不存在这样的点,使得.

【答案】1;(2;(2)见解析.

【解析】

1)由圆的方程求出点坐标,得双曲线的,再计算出后可得渐近线方程;

2)设,由圆方程与双曲线方程联立,消去后整理,可得

,由先求出,回代后求得坐标,计算

3)由已知得,设,由圆方程与双曲线方程联立,消去后整理,可解得,求出,从而可得,由,可知满足要求的点不存在.

1)由题意圆方程为,令,∴,即,∴渐近线方程为

2)由(1)圆方程为

,由得,(*)

所以,即,解得

方程(*),即,代入双曲线方程得,∵在第一、四象限,

(3)由题意

得:

,解得

所以

,当且仅当三点共线时,等号成立,

轴上不存在点,使得

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列四个命题:

函数的最大值为1

的否定是

为锐角三角形,则有

函数在区间内单调递增的充分必要条件.

其中错误的个数是( )

A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对称轴为坐标轴的椭圆的焦点为上.

(1)求椭圆的方程;

(2)设不过原点的直线与椭圆交于两点,且直线的斜率依次成等比数列,则当的面积为时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C1的极坐标方程为ρ4cosθ,直线C2的参数方程为t为参数).

1)求曲线C1的直角坐标方程和直线C2的普通方程;

2)若P10),直线C2与曲线C1相交于AB两点,求|PA||PB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学拟在高一下学期开设游泳选修课,为了了解高一学生喜欢游泳是否与性别有关,该学校对100名高一新生进行了问卷调查,得到如下列联表:

喜欢游泳

不喜欢游泳

合计

男生

10

女生

20

合计

已知在这100人中随机抽取1人抽到喜欢游泳的学生的概率为

(1)请将上述列联表补充完整;

(2)并判断是否有99.9%的把握认为喜欢游泳与性别有关?并说明你的理由;

(3)已知在被调查的学生中有5名来自甲班,其中3名喜欢游泳,现从这5名学生中随机抽取2人,求恰好有1人喜欢游泳的概率.

下面的临界值表仅供参考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(参考公式:,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现给出两个条件:①,②,从中选出一个条件补充在下面的问题中,并以此为依据求解问题:(选出一种可行的条件解答,若两个都选,则按第一个解答计分)在中,分别为内角所对的边( ).

1)求

2)若,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图空间几何体中,均为边长为的等边三角形,平面平面,平面平面

(Ⅰ)求线段的长度.

(Ⅱ)试在平面内作一条直线,使得直线上任意一点的连线均与平面平行,并给出详细证明;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中, 是抛物线的焦点, 是抛物线上的任意一点,当位于第一象限内时, 外接圆的圆心到抛物线准线的距离为.

(1)求抛物线的方程;

(2)过的直线交抛物线两点,且,点轴上一点,且,求点的横坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)已知直线若直线关于对称,又函数处的切线与平行,求实数的值;

2)若,证明:当时,恒成立.

查看答案和解析>>

同步练习册答案