精英家教网 > 高中数学 > 题目详情
在四棱锥P-ABCD中,底面ABCD是a的正方形,PA⊥平面ABCD,且PA=2AB
(1)求证:平面PAC⊥平面PBD;
(2)求二面角B-PC-D的余弦值.
【答案】分析:(1)由已知中底面ABCD是a的正方形,PA⊥平面ABCD,结合线面垂直的性质和正方形的性质可得PA⊥BD,AC⊥BD,再由线面垂直的判定定理可得BD⊥平面PAC,最后由面面垂直的判定定理得到平面PAC⊥平面PBD;
(2)在平面BCP内作BN⊥PC垂足为N,连DN,可得∠BND为二面角B-PC-D的平面角,解△BND,即可得到二面角B-PC-D的余弦值.
解答:证明:(1)∵PA⊥平面ABCD∴PA⊥BD
∵ABCD为正方形∴AC⊥BD
∴BD⊥平面PAC
又BD在平面BPD内,
∴平面PAC⊥平面BPD      (6分)

解:(2)在平面BCP内作BN⊥PC垂足为N,连DN,
∵Rt△PBC≌Rt△PDC,由BN⊥PC得DN⊥PC;
∴∠BND为二面角B-PC-D的平面角,
在△BND中,BN=DN=,BD=
∴cos∠BND=
点评:本题考查的知识点是二面角的平面角及求法,平面与平面垂直的判定,其中(1)的关键是熟练掌握线线垂直,线面垂直及面面垂直之间的相互转化,(2)的关键是证得∠BND为二面角B-PC-D的平面角.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在四棱锥P-ABCD中,底面为直角梯形,AD∥BC,∠BAD=90,PA⊥底面ABCD,且PA=AD=AB=2BC=2,M,N分别为PC、PB的中点.
(1)求证:PB⊥DM;
(2)求BD与平面ADMN所成角的大小;
(3)求二面角B-PC-D的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=4.AB=2,AN⊥PC于点N,M是PD中点.
(1)用空间向量证明:AM⊥MC,平面ABM⊥平面PCD.
(2)求直线CD与平面ACM所成的角的正弦值.
(3)求点N到平面ACM的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面ABCD是矩形,O为底面中心,PA⊥平面ABCD,PA=AD=2AB.M是PD的中点
(1)求证:直线MO∥平面PAB;
(2)求证:平面PCD⊥平面ABM.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面ABCD是矩形,已知AB=3,AD=2,PA=2,PD=2
2
,∠PAB=60°.
(1)求证:AD⊥平面PAB;
(2)求二面角A-PB-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•成都模拟)如图,在四棱锥P-ABCD中,底面ABCD为正方形,且PD⊥平面ABCD,PD=AB=1,EF分别是PB、AD的中点,
(I)证明:EF∥平面PCD;
(Ⅱ)求二面角B-CE-F的大小.

查看答案和解析>>

同步练习册答案