【题目】已知,其中.
(1)当时,设函数,求函数的极值.
(2)若函数在区间上递增,求的取值范围;
(3)证明:.
【答案】(1)极大值,无极小值;(2).(3)见解析
【解析】
(1)先求导,根据导数和函数极值的关系即可求出;
(2)先求导,再函数在区间上递增,分离参数,构造函数,求出函数的最值,问题得以解决;
(3)取得到,取,可得
,累加和根据对数的运算性和放缩法即可证明.
解:(1)当时,设函数,则
令,解得
当时,,当时,
所以在上单调递增,在上单调递减
所以当时,函数取得极大值,即极大值为,无极小值;
(2)因为,
所以,
因为在区间上递增,
所以在上恒成立,
所以在区间上恒成立.
当时,在区间上恒成立,
当时,,
设,则在区间上恒成立.
所以在单调递增,则,
所以,即
综上所述.
(3)由(2)可知当时,函数在区间上递增,
所以,即,
取,则
.
所以
所以
科目:高中数学 来源: 题型:
【题目】设,分别是椭圆的左,右焦点,两点分别是椭圆的上,下顶点,是等腰直角三角形,延长交椭圆于点,且的周长为.
(1)求椭圆的方程;
(2)设点是椭圆上异于的动点,直线与直分别相交于两点,点,试问:的外接圆是否恒过轴上的定点(异于点)?若是,求该定点坐标;若否,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设,分别是椭圆的左,右焦点,两点分别是椭圆的上,下顶点,是等腰直角三角形,延长交椭圆于点,且的周长为.
(1)求椭圆的方程;
(2)设点是椭圆上异于的动点,直线与直分别相交于两点,点,求证:的外接圆恒过原点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,四边形ABCD为正方形,平面ACD,且,E为PD的中点.
(Ⅰ)证明:平面平面PAD;
(Ⅱ)求直线PA与平面AEC所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知直线的参数方程为(为参数,),以原点为极点,以轴的非负半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)写出直线的极坐标方程和曲线的直角坐标方程;
(2)若直线与曲线相交于,两点,且,求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com