精英家教网 > 高中数学 > 题目详情
设函数f(x)的定义域为R,有下列三个命题:
(1)若存在常数M,使得对任意x∈R,有f(x)≤M,则M是函数f(x)的最大值;
(2)若存在x0∈R,使得对任意x∈R,且x≠x0,有f(x)<f(x0),则f(x0)是函数f(x)的最大值;
(3)若存在x0∈R,使得对任意x∈R,有f(x)≤f(x0),则f(x0)是函数f(x)的最大值.这些命题中,真命题是
(2)(3)
(2)(3)
(写出你认为正确的所有编号)
分析:由题设条件,三个命题都是考查函数最大值的,函数的最大值要满足两点:一它是函数值,二它是函数值最大的,由此特征对三个命题进行分析即可找出正确命题的序号得到答案
解答:解:(1)若存在常数M,使得对任意x∈R,有f(x)≤M,则M是函数f(x)的最大值;此命题不正确,因为由存在常数M,使得对任意x∈R,有f(x)≤M,不能保证M是函数值;
(2)若存在x0∈R,使得对任意x∈R,且x≠x0,有f(x)<f(x0),则f(x0)是函数f(x)的最大值;此命题正确,因为最大值必是函数值,此命题的条件能保证f(x0)是函数值且是最大值;
(3)若存在x0∈R,使得对任意x∈R,有f(x)≤f(x0),则f(x0)是函数f(x)的最大值.此命题正确,因为存在x0∈R,使得对任意x∈R,有f(x)≤f(x0),保证了f(x0)是函数值且是函数值中的最大的.
综上知(2)(3)是正确的
故答案为(2)(3)
点评:本题考查命题真假判断,主要考查了函数最大值的定义,理解最大值的定义是正确解答本题的关键,本题是基顾概念考查题,记忆理解与本题有关的概念是重点
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)的定义在R上的偶函数,且是以4为周期的周期函数,当x∈[0,2]时,f(x)=2x-cosx,则a=f(-
3
2
)与b=f(
15
2
)的大小关系为
a>b
a>b

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)的定义域为D,若对于任意x1,x2∈D,当x1<x2时,都有f(x1)≤f(x2),则称函数f(x)在D上为非减函数.设函数f(x)为定义在[0,1]上的非减函数,且满足以下三个条件:①f(0)=0;②f(1-x)+f(x)=1,x∈[0,1]; ③当x∈[0,
1
4
]
时,f(x)≥2x恒成立.则f(
3
7
)+f(
5
9
)
=
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

设函数f(x)的定义在R上的偶函数,且是以4为周期的周期函数,当x∈[0,2]时,f(x)=2x-cosx,则a=f(-数学公式)与b=f(数学公式)的大小关系为________.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年安徽省蚌埠二中高三(上)12月月考数学试卷(文科)(解析版) 题型:填空题

设函数f(x)的定义在R上的偶函数,且是以4为周期的周期函数,当x∈[0,2]时,f(x)=2x-cosx,则a=f(-)与b=f()的大小关系为   

查看答案和解析>>

科目:高中数学 来源:山东省月考题 题型:填空题

设函数f(x)的定义在R上的偶函数,且是以4为周期的周期函数,当x∈[0,2]时,f(x)=2x﹣cosx,则a=f(﹣)与b=f()的大小关系为(    ).

查看答案和解析>>

同步练习册答案