精英家教网 > 高中数学 > 题目详情

【题目】为了了解甲、乙两校学生自主招生通过情况,从甲校抽取60人,从乙校抽取50人进行分析。

(1)根据题目条件完成上面2×2列联表,并据此判断是否有99%的把握认为自主招生通过情况与学生所在学校有关;

(2)现已知甲校三人在某大学自主招生中通过的概率分别为,用随机变量X表示三人在该大学自主招生中通过的人数,求X的分布列及期望.

参考公式:.

参考数据:

【答案】(1)见解析;(2)见解析

【解析】

(1)由题可得表格,再计算,与6.635比较大小即可得到答案;

2)随机变量X的可能取值为0,1,2,3,分别利用乘法原理计算对应概率,从而求得分布列和数学期望.

(1)2×2列联表如下

通过

未通过

总计

甲校

40

20

60

乙校

20

30

50

总计

60

50

110

算得,

所以有99%的把握认为学生的自主招生通过情况与所在学校有关

(2)设ABC自主招生通过分别记为事件MNR,则

∴随机变量X的可能取值为0,1,2,3.

所以随机变量X的分布列为:

X

0

1

2

3

P

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

(1)求的单调区间;

(2)当时,恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】蚌埠市某中学高三年级从甲(文)、乙(理)两个科组各选出名学生参加高校自主招生数学选拔考试,他们取得的成绩的茎叶图如图所示,其中甲组学生的平均分是,乙组学生成绩的中位数是

1)求的值;

2)计算甲组位学生成绩的方差

3)从成绩在分以上的学生中随机抽取两名学生,求甲组至少有一名学生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义域为的函数是奇函数.

(1)求的解析式;

(2)试判断的单调性,并用定义法证明;

3)若存在,使得不等式成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱ABCA1B1C1中,DE分别为BCAC的中点,AB=BC

求证:(1A1B1∥平面DEC1

2BEC1E

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的导函数.

(1)求函数的单调区间;

(2)若函数上存在最大值0,求函数上的最大值;

(3)求证:当时,.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,点,直线,圆.

1)求的取值范围,并求出圆心坐标;

2)有一动圆的半径为,圆心在上,若动圆上存在点,使,求圆心的横坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn,满足Sn=2an-1nN*),数列{bn}满足nbn+1-n+1bn=nn+1)(nN*),且b1=1

1)证明数列{}为等差数列,并求数列{an}{bn}的通项公式;

2)若cn=-1n-1,求数列{cn}的前n项和T2n

3)若dn=an,数列{dn}的前n项和为Dn,对任意的nN*,都有DnnSn-a,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某单位为了解其后勤部门的服务情况,随机访问了40名其他部门的员工,根据这40名员工对后勤部门的评分情况,绘制了频率分布直方图如图所示,其中样本数据分组区间为.

1)求的值;

2)估计该单位其他部门的员工对后勤部门的评分的中位数;

3)以评分在的受访者中,随机抽取2人,求此2人中至少有1人对后勤部门评分在内的概率.

查看答案和解析>>

同步练习册答案