精英家教网 > 高中数学 > 题目详情

【题目】已知函数

1)求证:当时,上存在最小值;

2)若的零点且当时,,求实数的取值范围.

【答案】1)见解析(2

【解析】

1)将代入,对函数进行求导,根据零点存在定理可得上有唯一零点,判断单调性即可得结果;

2)由为函数零点,将表示可得,当时,通过求导可得上单调递增,从而可得结果;,则取,验证,即时,不满足题意,综合可得结果.

1的定义域为.

时,.

因为当时,

所以上单调递增,

.

所以上有唯一零点

且当时,

时,.

所以上单调递减,在上单调递增,

所以上存在最小值.

2)因为是函数的零点,

所以,即,即

所以,所以

①若,则当时,

所以上单调递增,

所以当时,

所以满足题意.

②若,则取

因为,且

所以不满足题意.

综上,的取值范围

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】半正多面体亦称阿基米德多面体,是由边数不全相同的正多边形为面的多面体,体现了数学的对称美.如图,将正方体沿交于一顶点的三条棱的中点截去一个三棱锥,如此共可截去八个三棱锥,得到一个有十四个面的半正多面体,它们的棱长都相等,其中八个为正三角形,六个为正方形,称这样的半正多面体为二十四等边体.若棱长为的二十四等边体的各个顶点都在同一个球面上,则该球的表面积为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】小军的微信朋友圈参与了微信运动,他随机选取了40位微信好友(女20人,男20人),统计其在某一天的走路步数.其中,女性好友的走路步数数据记录如下:

5860 8520 7326 6798 7325 8430 3216 7453 11754 9860

8753 6450 7290 4850 10223 9763 7988 9176 6421 5980

男性好友走路的步数情况可分为五个类别(说明:a~b表示大于等于a,小于等于b

A0~2000步)1人, B2001-5000步)2人, C5001~8000步)3人,

D8001-10000步)6人, E10001步及以上)8

若某人一天的走路步数超过8000步被系统认定为健康型否则被系统认定为进步型

I)访根据选取的样本数据完成下面的2×2列联表,并根据此判断能否有95%以上的把握认为认定类型性别有关?

健康型

进步型

总计

20

20

总计

40

(Ⅱ)如果从小军的40位好友中该天走路步数超过10000的人中随机抽取3人,设抽到女性好友X人,求X的分布列和数学期望

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

讨论的单调性.

,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,.

(1)当为何值时,直线是曲线的切线;

(2)若不等式上恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如题所示的平面图形中,为矩形,为线段的中点,点是以为圆心,为直径的半圆上任一点(不与重合),以为折痕,将半圆所在平面折起,使平面平面,如图2为线段的中点.

1)证明:.

2)若锐二面角的大小为,求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在多面体中,四边形为正方形,.

(1)证明:平面平面.

(2)若平面,二面角,三棱锥的外接球的球心为,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四棱锥平面.

1)求证:平面

2)求证:在线段上存在一点,使得,并指明点的位置;

3)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图①,△ABC是以AC为斜边的等腰直角三角形,△BCD是等边三角形.如图②,将△BCD沿BC折起,使平面BCD⊥平面ABC,记BC的中点为EBD的中点为M,点FN在棱AC上,且AF3CFC.

1)试过直线MN作一平面,使它与平面DEF平行,并加以证明;

2)记(1)中所作的平面为α,求平面α与平面BMN所成锐二面角的余弦值.

查看答案和解析>>

同步练习册答案