【题目】有一块圆心角为120度,半径为的扇形钢板(为弧的中点),现要将其裁剪成一个五边形磨具,其下部为等腰三角形,上部为矩形.设五边形的面积为.
(1)写出关于的函数表达式,并写出的取值范围;
(2)当取得最大值时,求的值.
【答案】(1) S=R2sinα(4cosα-1)(0<α<)(2)
【解析】
(1)根据直角三角形解得矩形的长与宽以及等腰三角形的底与高,再根据矩形面积公式以及三角形面积公式求结果,最后根据实际意义确定的取值范围;(2)利用导数求函数最值.
(1)如图,设OP与CD、AB交于M,N两点,
为弧的中点,则M为CD中点,OP⊥AB,
OM=OCcosα=Rcosα,CM=OCsinα=Rsinα,则EF=CD=2CM=2Rsinα
∠POB=∠AOB=60°,∠OBN=30°,
所以,ON=OB=R,
CF=MN=OM-ON=Rcosα-R
所以,S=CDCF+EFON=2Rsinα×(Rcosα-R)+×2Rsinα×R
=R2sinα(4cosα-1)(0<α<)
(2)设f(α)=sinα(4cosα-1),则
==0
因为0<α<,所以,
由表可,当S取得最大值时,
科目:高中数学 来源: 题型:
【题目】如图, 是边长为3的正方形, 平面, 平面, .
(1)证明:平面平面;
(2)在上是否存在一点,使平面将几何体分成上下两部分的体积比为?若存在,求出点的位置;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“微信抢红包”自2015年以来异常火爆,在某个微信群某次进行的抢红包活动中,若所发红包的总金额为8元,被随机分配为1.72元,1.83元,2.28元,1.55元,0.62元, 5份供甲、乙等5人抢,每人只能抢一次,则甲、乙二人抢到的金额之和不低于3元的概率是 ( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司租地建仓库,每月土地占用费y1与仓库到车站的距离成反比,而每月库存货物的运费y2与到车站的距离成正比,如果在距离车站10km处建仓库,这两项费用y1和y2分别为2万元和8万元,那么要使这两项费用之和最小,仓库应建在距离车站( )
A.4kmB.5kmC.6kmD.7km
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】自2018年10月1日起,中华人民共和国个人所得税新规定,公民月工资、薪金所得不超过5000元的部分不必纳税,超过5000元的部分为全月应纳税所得额,此项税款按下表分段累计计算:
全月应纳税所得额 | 税率 |
不超过1500元的部分 | 3 |
超过1500元不超过4500元的部分 | 10 |
超过4500元不超过9000元的部分 | 20 |
超过9000元不超过35000元 | 25 |
如果小李10月份全月的工资、薪金为7000元,那么他应该纳税多少元?
如果小张10月份交纳税金425元,那么他10月份的工资、薪金是多少元?
写出工资、薪金收入元月与应缴纳税金元的函数关系式.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对称轴为坐标轴的椭圆的焦点为,,在上.
(1)求椭圆的方程;
(2)设不过原点的直线与椭圆交于,两点,且直线,,的斜率依次成等比数列,则当的面积为时,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分14分)如图,在边长为的菱形中,,点,分别是边,的中点,.沿将△翻折到△,连接,得到如图的五棱锥,且.
(1)求证:平面;
(2)求四棱锥的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列、满足,,其中,则称为的“生成数列”.
(1)若数列的“生成数列”是,求;
(2)若为偶数,且的“生成数列”是,证明:的“生成数列”是;
(3)若为奇数,且的“生成数列”是,的“生成数列”是,…,依次将数列,,,…的第项取出,构成数列.
探究:数列是否为等比数列,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com