精英家教网 > 高中数学 > 题目详情
14.已知抛物线C:y2=2px的焦点坐标为F(2,0),则p=4;若已知点A(6,3),且点M在抛物线C上,则|MA|+|MF|的最小值为8.

分析 利用抛物线的焦点坐标,真假求解P即可;判断A的位置,利用抛物线的性质求解|MA|+|MF|的最小值.

解答 解:抛物线C:y2=2px的焦点坐标为F(2,0),则p=4;
已知点A(6,3),且点M在抛物线C:y2=8x上,可知A的抛物线内部,则|MA|+|MF|的最小值为M到抛物线的准线的距离;抛物线的准线方程为:x=-2,则|MA|+|MF|的最小值为:8.
故答案为:4;  8.

点评 本题考查抛物线的简单性质的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.设△AnBnCn的三边长分别是an,bn,cn,△AnBnCn的面积为Sn,n∈N*,若b1>c1,b1+c1=2a1,an+1=an,bn+1=$\frac{{{a_n}+{c_n}}}{2},{c_{n+1}}=\frac{{{a_n}+{b_n}}}{2}$,则(  )
A.{Sn}为递减数列B.{Sn}为递增数列
C.{S2n-1}为递增数列,{S2n}为递减数列D.{S2n-1}为递减数列,{S2n}为递增数列

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知△ABC的三个内角A,B,C成等差数列,若A=45°,AC=4,则△ABC最短边的边长等于(  )
A.$\frac{{\sqrt{6}}}{3}$B.$\frac{{\sqrt{6}}}{2}$C.$\frac{{4\sqrt{6}}}{3}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知焦点在x轴的椭圆的离心率为0.5,焦距是2,则椭圆的标准方程是$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知抛物线关于y轴对称,它的顶点在坐标原点,并且经过点M($\sqrt{3}$,-2$\sqrt{3}$)
(1)求抛物线的标准方程.
(2)如果直线y=x+m与这个抛物线交于不同的两点,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在△ABC中,已知B=45°,b=2.求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知抛物线x2=2y,过动点P作抛物线的两条切线,切点分别为A,B,且kPAkPB=-2.
(Ⅰ)求点P的轨迹方程;
(Ⅱ)试问直线AB是否恒过定点?若恒过定点,请求出定点坐标;若不恒过定点,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.P是双曲线$\frac{x^2}{64}-\frac{y^2}{36}=1$上一点,F1,F2是双曲线的两个焦点,且|PF1|=15,则|PF2|的值是31.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=|x|,g(x)=m-|x-3|.
(1)解关于的不等式g(f(x))+1-m>0;
(2)已知c>0,f(a)<c,f(b)<c,求证:$\frac{f(a+b)}{f({c}^{2}+ab)}$<$\frac{1}{c}$.

查看答案和解析>>

同步练习册答案