精英家教网 > 高中数学 > 题目详情
已知椭圆的两个焦点分别是F1(0,-2
2
),F2(0,2
2
)
,离心率e=
2
2
3

(1)求椭圆的方程;
(2)一条不与坐标轴平行的直线l与椭圆交于不同的两点M,N,且线段MN中点的横坐标为-
1
2
,求直线l的倾斜角的范围.
分析:(1)根据焦距,求得a和b的关系,利用离心率求得a和b的另一公式联立求得a和b,则椭圆的方程可得.
(2)设出直线l的方程,与椭圆的方程联立消去y,利用判别式大于0大于k和b的不等式关系,利用韦达定理表示出x1+x2和x1x2,根据MN的中点的横坐标求得k和b的关系,进而求得b的范围,分别看b≥3和b≤-3两种情况,求得k的范围,则直线的倾斜角的范围可得.
解答:解:(1)依题意可知
a2-b2=8
a2-b2
a2
=
8
9
求得a=3,b=1
∴椭圆的方程为:
y2
9
x2
=1
(2)直线l不与坐标轴平行,设为y=kx+b(k≠0),M(x1,y1),N(x2,y2
联立方程:
y=kx+b
y2
9
+x2=1
则(9+k2)x2+2kbx+b2-9=0
△=(2kb)2-4(9+k2)(b2-9)>0,k2-b2+9>0
x1+x2=-
2kb
9+k2
,x1x2=
b2-9
9+k2

MN的中点的横坐标=
1
2
(x1+x2)=-
1
2

所以x1+x2=-1,可得所以9+k2=2kb,
整理得(k-b)2=b2-9≥0,故b2≥9,解得b≥3或b≤-3
又b(b-2k)<0
所以b≥3时,b-2k<0,k>
b
2
3
2

b≤-3<0时,b-2k>0,k<
b
2
≤-
3
2

所以k的取值范围为(-∞,-
3
2
)∪(
3
2
,+∞)
直线l的倾斜角的取值范围为:(arctan
3
2
π
2
)∪(
π
2
,π-arctan
3
2
点评:本题主要考查了直线与圆锥曲线的关系.研究直线与圆锥曲线位置关系的问题,通常有两种方法:一是转化为研究方程组的解的问题,利用直线方程与圆锥曲线方程所组成的方程组消去一个变量后,将交点问题(包括公共点个数、与交点坐标有关的问题)转化为一元二次方程根的问题,结合根与系数的关系及判别式解决问题;二是运用数形结合,迅速判断某些直线和圆锥曲线的位置关系.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

求下列各曲线的标准方程.
(1)已知椭圆的两个焦点分别是(-2,0),(2,0),并且经过点(
5
2
,-
3
2
).
(2)已知抛物线焦点在x轴上,焦点到准线的距离为6.

查看答案和解析>>

科目:高中数学 来源:2012年山东省高考模拟预测卷(四)文科数学试卷(解析版) 题型:解答题

给定椭圆  ,称圆心在坐标原点,半径为的圆是椭圆的“伴随圆”. 已知椭圆的两个焦点分别是,椭圆上一动点满足

(Ⅰ)求椭圆及其“伴随圆”的方程;

(Ⅱ)过点P作直线,使得直线与椭圆只有一个交点,且截椭圆的“伴随圆”所得的弦长为.求出的值.

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年广东省汕头市高三第一次模拟考试数学理卷 题型:解答题

((本小题满分14分)

给定椭圆  ,称圆心在坐标原点,半径为的圆是椭圆的“伴随圆”. 已知椭圆的两个焦点分别是,椭圆上一动点满足

(Ⅰ)求椭圆及其“伴随圆”的方程

(Ⅱ)试探究y轴上是否存在点(0, ),使得过点作直线与椭圆只有一个交点,且截椭圆的“伴随圆”所得的弦长为.若存在,请求出的值;若不存在,请说明理由。

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年广东省汕头市高三第一次模拟考试数学文卷 题型:解答题

(本小题满分14分)

给定椭圆  ,称圆心在坐标原点,半径为的圆是椭圆的“伴随圆”. 已知椭圆的两个焦点分别是,椭圆上一动点满足

(Ⅰ) 求椭圆及其“伴随圆”的方程;

(Ⅱ) 过点P作直线,使得直线与椭圆只有一个交点,且截椭圆的“伴随圆”所得的弦长为.求出的值.

 

查看答案和解析>>

同步练习册答案