精英家教网 > 高中数学 > 题目详情
已知a,b,c分别是△ABC的三个内角A,B,C所对的边,向量
m
=(
3
, -1)
,若
n
=(cosA, sinA)
,且
m
n
, acosB+bcosA=csinC
,则角A,B的大小分别是
 
分析:由向量数量积的意义,有
m
n
?
3
cosA-sinA=0
,进而可得A,再根据正弦定理,可得sinAcosB+sinBcosA=sinC  sinC,结合和差公式的正弦形式,化简可得sinC=sin2C,可得C,由A、C的大小,可得B.
解答:解:根据题意,
m
n
?
3
cosA-sinA=0
?A=
π
3

acosB+bcosA=csinC
由正弦定理可得,sinAcosB+sinBcosA=sinCsinC,
又由sinAcosB+sinBcosA=sin(A+B)=sinC,
化简可得,sinC=sin2C,
则C=
π
2

B=
π
6

故答案为:A=
π
3
;B=
π
6
点评:本题考查向量数量积的应用,判断向量的垂直,以及两角和正弦函数的应用,解题时,注意向量的正确表示方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知a、b、c分别是△ABC三个内角A、B、C的对边.
(1)若b2=ac,求角B的范围.
(2)若acosA=bcosB,试判断△ABC的形状,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b,c分别是△ABC的三个内角A,B,C所对的边,若a=1,b=
3
,A+C=2B,则sinC=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a、b、c分别是△ABC的三个内角A、B、C所对的边,若
cosB
cosC
=-
b
2a+c
,则B=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b,c分别是△ABC中角A,B,C的对边,且sin2A+sin2C-sin2B=sinAsinC.
 (1)求角B的大小;
 (2)若c=3a,求tanA的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b,c分别是△ABC的三个内角A,B,C的对边,且满足2asinB-
3
b=0.
(Ⅰ)求角A的大小;
(Ⅱ)当A为锐角时,求函数y=
3
sinB+sin(C-
π
6
)的最大值.

查看答案和解析>>

同步练习册答案