精英家教网 > 高中数学 > 题目详情
12.如图,在四棱锥P-ABCD中,AD∥BC,∠BAD=90°,PA=PD,AB⊥PA,AD=2,AB=BC=1
(Ⅰ)求证:AB⊥PD
(Ⅱ)若E为PD的中点,求证:CE∥平面PAB
(Ⅲ)设平面PAB∩平面PCD=PM,点M在平面ABCD上.当PA⊥PD时,求PM的长.

分析 (Ⅰ)由AB⊥AD,又AB⊥PA,可证线面垂直AB⊥平面PAD,利用线面垂直的性质可证AB⊥PD.
(Ⅱ)取PA的中点F,连接BF,EF,通过证明四边形BCEG是平行四边形,可证EC∥BF,利用线面平行的判定定理即可证明CE∥平面PAB.
(Ⅲ)在平面ABCD上,延长AB,CD交于点M,由于平面PAB∩平面PCD=PM,通过证明PA=$\sqrt{2}$,AM⊥PA,利用勾股定理即可得解.

解答 (本小题满分14分)
解:(Ⅰ)因为∠BAD=90°,
所以AB⊥AD,…(1分)
又因为AB⊥PA,…(2分)
所以AB⊥平面PAD,…(3分)
所以AB⊥PD…(4分)
(Ⅱ)取PA的中点F,连接BF,EF…(5分)
因为E为棱PD中点,所以EF∥AD,EF=$\frac{1}{2}$AD,
又因为BC∥AD,BC=$\frac{1}{2}$AD,
所以BC∥EF,BC=EF.
所以四边形BCEG是平行四边形,EC∥BF…(8分)
又BF?平面PAB,CE?平面PAB,
所以CE∥平面PAB…(9分)
(Ⅲ)在平面ABCD上,延长AB,CD交于点M.
因为M∈AB,
所以M∈平面PAB;又M∈CD,
所以M∈平面PCD,
所以平面PAB∩平面PCD=PM…(11分)
在△ADM中,因为BC∥AD,BC=$\frac{1}{2}$AD,
所以 AM=2AB=2…(12分)
因为PA⊥PD,
所以△APD是等腰直角三角形,所以PA=$\sqrt{2}$…(13分)
由(Ⅰ)得AM⊥平面PAD,所以AM⊥PA.
在直角△PAM中,PM=$\sqrt{P{A}^{2}+A{M}^{2}}$=$\sqrt{6}$…(14分)

点评 本题主要考查了线面垂直的判定与性质,线面平行的判定定理,勾股定理的综合应用,考查了空间想象能力和推理论证能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.已知i为虚数单位,则复数i(1-i)=1+i.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知A,B是圆${C_1}:{x^2}+{y^2}=1$上的动点,$AB=\sqrt{3}$,P是圆${C_2}:{(x-3)^2}+{(y-4)^2}=1$上的动点,则$|{\overrightarrow{PA}+\overrightarrow{PB}}|$的取值范围为[7,13].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.经过两条直线2x-y+3=0和4x+3y+1=0的交点,且垂直于直线2x-3y+4=0直线方程为3x+2y+1=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知集合A={x|0<x<2},B={x|x2-1>0},那么A∩B=(  )
A.{x|0<x<1}B.{x|1<x<2}C.{x|-1<x<0}D.{x|-1<x<2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在四棱锥P-ABCD中,底面ABCD为矩形,AP⊥平面PCD,E,F分别为PC,AB的中点.求证:
(1)平面PAD⊥平面ABCD;
(2)EF∥平面PAD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.命题p:f(x)=x3+ax2+ax在R上的单调递增函数,命题q:方程$\frac{{x}^{2}}{a+2}$+$\frac{{y}^{2}}{a-2}$=1表示双曲线.
(1)当a=1时,判断命题p的真假,并说明理由;
(2)若命题“p且q“为真命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知a,b,c分别是△ABC内角A,B,C的对边sin2B=2sinAsinC,a=b
(1)求cosA
(2)若a=$\sqrt{2}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在△ABC中,角A,B,C所对的边分别为a,b,c.函数f(x)=sin(2x+A).
(1)若$A=\frac{π}{2}$,则$f(-\frac{π}{6})$的值为$\frac{1}{2}$;
(2)若$f(\frac{π}{12})=1$,a=3,$cosB=\frac{4}{5}$,求△ABC的边b的长度.

查看答案和解析>>

同步练习册答案