精英家教网 > 高中数学 > 题目详情
如图:E、H分别是空间四边形ABCD的边AB、AD的中点,平面α过EH分别交BC、CD于F、G.
求证:EHFG.
证明:∵E、H分别是空间四边形ABCD的边AB、AD的中点;
∴EHBD,
EH不在平面BCD内,BD在平面BCD内.
∴EH平面BCD.
又平面α过EH分别交BC、CD于F、G;
∴EHFG.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图所示的长方体ABCD-A1B1C1D1中,底面ABCD是边长为2的正方形,O为AC与BD的交点,BB1=
2
,M是线段B1D1的中点.
(1)求证:BM平面D1AC;
(2)求三棱锥D1-AB1C的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥P-ABCD中,底面是边长为2的菱形,∠BAD=60°,对角线AC与BD相交于点O,PO为四棱锥P-ABCD的高,且PO=
3
,E、F分别是BC、AP的中点.
(1)求证:EF平面PCD;
(2)求三棱锥F-PCD的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知PA⊥矩形ABCD所在平面,M、N分别为AB、PC的中点;
(Ⅰ)求证:MN平面PAD;
(Ⅱ)求证:MN⊥CD.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知矩形ABCD所在平面外一点P,PA⊥平面ABCD,AB=2,∠PDA=45°,E、F分别是AB、PC的中点.
(1)求证:EF平面PAD;
(2)求异面直线EF与CD所成的角;
(3)若AD=3,求点D到面PEF的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知直三棱柱ABC-A1B1C1中,△ABC为等腰直角三角形,且∠BAC=90°,且AB=AA1,D,E,F分别为B1A,C1C,BC的中点.
(Ⅰ)求证:DE平面ABC;
(Ⅱ)求证:B1F⊥平面AEF;
(Ⅲ)求二面角A-EB1-F的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,已知ABCD是直角梯形,∠ABC=90°,ADBC,AD=2,AB=BC=1,PA⊥平面ABCD.
(1)证明:PC⊥CD;
(2)若E是PA的中点,证明:BE平面PCD;
(3)若PA=3,求三棱锥B-PCD的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

平面α与平面β平行的条件可以是(  )
A.平面α内有无穷多条直线与β平行
B.直线lα,且lβ
C.直线l?α,m?β,且lβ,mα
D.平面α内的任何直线都平行于β

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知在直四棱柱ABCD-A1B1C1D1中,AD⊥DC,ABDC,DC=DD1=2AD=2AB=2.
(1)求证:DB⊥平面B1BCC1
(2)设E是DC上一点,试确定E的位置,使得D1E平面A1BD,并说明理由.

查看答案和解析>>

同步练习册答案