精英家教网 > 高中数学 > 题目详情

【题目】某地区业余足球运动员共有15000人,其中男运动员9000人,女运动员6000人,为调查该地区业余足球运动员每周平均踢足球占用时间的情况,采用分层抽样的方法,收集300位业务足球运动员每周平均踢足球占用时间的样本数据(单位:小时)
得到业余足球运动员每周平均踢足球所占用时间的频率分布直方图(如图所示),其中样本数据分组区间为:(0,2],(2,4],(4,6],(6,8],(8,10],(10,12].
将“业务运动员的每周平均踢足球时间所占用时间超过4小时”
定义为“热爱足球”.
附:K2=

P(K2≥k0

0.10

0.05

0.010

0.005

k0

2.706

3.841

6.635

7.879


(1)应收集多少位女运动员样本数据?
(2)估计该地区每周平均踢足球所占用时间超过4个小时的概率.
(3)在样本数据中,有80位女运动员“热爱足球”.请画出“热爱足球与性别”列联表,并判断是否有99%的把握认为“热爱足球与性别有关”.

【答案】
(1)解:

∴应收集120位女运动员样本数据


(2)解:由频率分布直方图得1﹣2×(0.100+0.025)=0.75,

∴该地区每周平均踢足球所占用时间超过4个小时的概率的估计值为0.75


(3)解:由(2)知,300位足球运动中有300×0.75=225人的每周平均踢足球时间超过4小时,

75人的每周平均踢足球占用时间超过4小时,

∴热爱足球与性别列联表如下,

男运动员

女运动员

总计

不热爱足球

35

40

75

热爱足球

145

80

225

总计

180

120

300

结合列联表可算得 =

∴有99%的把握认为“热爱足球与性别有关”


【解析】(1)利用分层抽样中每层所抽取的比例数相等求得答案;(2)由频率分布直方图结合概率和为1求得该地区每周平均踢足球所占用时间超过4个小时的概率.(3)由题意列出2×2列联表,计算出k2的值,结合附表得答案.
【考点精析】解答此题的关键在于理解频率分布直方图的相关知识,掌握频率分布表和频率分布直方图,是对相同数据的两种不同表达方式.用紧凑的表格改变数据的排列方式和构成形式,可展示数据的分布情况.通过作图既可以从数据中提取信息,又可以利用图形传递信息.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在半径为R的圆桌上摆放同样大小的半径为r的硬币.要求硬币不准露出圆桌面边缘,并且所摆硬币彼此不能重叠.当摆放n枚硬币之后,圆桌上就不能再多摆放一枚这种硬币了.求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,过圆O外一点P作圆的切线PC,切点为C,割线PAB、割线PEF分别交圆O于A与B、E与F.已知PB的垂直平分线DE与圆O相切.

(1)求证:DE∥BF;
(2)若 ,DE=1,求PB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“双曲线的方程为 ”是“双曲线的渐近线方程为 ”的( )

A. 充分不必要条件 B. 必要不充分条件

C. 充分必要条件 D. 既不充分也不必要条件

【答案】A

【解析】双曲线的方程为,则渐近线方程为,渐近线方程为: ,反之当渐近线方程为时,只需要满足,等轴双曲线即可.故选择充分不必要条件.

故答案为:A.

型】单选题
束】
10

【题目】如图,为测量河对岸塔 的高,先在河岸上选一点 ,使 在塔底 的正东方向上,在点 处测得 点的仰角为 ,再由点 沿北偏东 方向走 到位置 ,测得 ,则塔 的高是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,内角A,B,C对边分别为a,b,c,且c<a,已知 =﹣2,tanB=2 ,b=3.
(1)求a和c的值;
(2)求sin(B﹣C)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)求函数 的最小正周期;

(2)若 ,且 ,求 的值.

【答案】(1) (2)

【解析】试题分析:(1)根据二倍角公式和两角和差公式得到,进而得到周期;(2)由,得到 由配凑角公式得到,代入值得到函数值.

解析:

(1)由题意

=

所以 的最小正周期为

(2)由

又由 ,所以

型】解答
束】
20

【题目】为响应十九大报告提出的实施乡村振兴战略,某村庄投资 万元建起了一座绿色农产品加工厂.经营中,第一年支出 万元,以后每年的支出比上一年增加了 万元,从第一年起每年农场品销售收入为 万元(前 年的纯利润综合=前 年的 总收入-前 年的总支出-投资额 万元).

(1)该厂从第几年开始盈利?

(2)该厂第几年年平均纯利润达到最大?并求出年平均纯利润的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的几何体中,四边形为正方形四边形为直角梯形

1)求与平面所成角的正弦值

2)线段或其延长线上是否存在点使平面平面证明你的结论

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的方程为,过点的直线与抛物线相交于两点,分别过点作抛物线的两条切线,记相交于点.

(1)证明:直线的斜率之积为定值;

2求证:点在一条定直线上.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆上的焦点为,离心率为

(1)求椭圆方程;

2)设过椭圆顶点,斜率为的直线交椭圆于另一点,交轴于点,且 成等比数列,求的值.

查看答案和解析>>

同步练习册答案