精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(1)当时,求函数在点处的切线方程;

(2)是否存在实数a,使函数在区间上的最小值为,若存在,求出a的值,若不存在,请说明理由.

【答案】(1);(2)存在,使函数在区间上的最小值为.

【解析】

1)先求出切点的坐标,再求出切线的斜率得解;(2)先求出,再对a分类讨论,求出每一种情况下的最小值即得解.

(1)当时,

∴函数在点处的切线方程为.

(2)∵,∴此函数的定义域为

时,恒成立,∴上是减函数,

∴当时,取得最小值

解得矛盾;

时,令,得(舍),

上,,在上,

∴当,即时,函数上是减函数,在上是增函数,

∴当时,取得最小值

,得,符合题意.

,即时,函数是减函数,

∴当时,取得最小值,即

解得矛盾.

综上,存在,使函数在区间上的最小值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数(b为常数)

(1)若b=1,求函数H(x)=f(x)﹣g(x)图象在x=1处的切线方程;

(2)若b2,对任意x1,x2∈[1,2],且x1x2,都有|f(x1)﹣f(x2)|>|g(x1)﹣g(x2)|成立,求实数b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如题所示的平面图形中,为矩形,为线段的中点,点是以为圆心,为直径的半圆上任一点(不与重合),以为折痕,将半圆所在平面折起,使平面平面,如图2为线段的中点.

1)证明:.

2)若锐二面角的大小为,求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如果,已知正方形的边长为2,平行轴,顶点分别在函数的图像上,则实数的值为________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四棱锥平面.

1)求证:平面

2)求证:在线段上存在一点,使得,并指明点的位置;

3)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1所示,在等腰梯形ABCD中,,垂足为E沿EC折起到的位置,如图2所示,使平面平面ABCE.

1)连结BE,证明:平面

2)在棱上是否存在点G,使得平面,若存在,直接指出点G的位置不必说明理由,并求出此时三棱锥的体积;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四棱锥,平面平面,四边形是菱形,.

1)若,证明:

2)若,求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直四棱柱中,底面是平行四边形, 分别在棱上,且.

1)求证:平面

2)若,求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,的导函数,为自然对数的底数.

1)求的值;

2)求证:;

3)若恒成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案