A. | (-∞,$\frac{2}{3}$] | B. | (0,$\frac{1}{2}$) | C. | ($\frac{1}{2}$,$\frac{2}{3}$] | D. | ($\frac{1}{2}$,1) |
分析 由p且q为真命题,故p和q均为真命题,我们可根据函数的性质,分别计算出p为真命题时,参数a的取值范围及分别计算出q为真命题时,参数a的取值范围,求其交集即可.
解答 解:命题p:关于x的函数y=x2-3ax+4在[1,+∞)上是增函数,即 $\frac{3a}{2}$≤1,a≤$\frac{2}{3}$.
命题q:关于x的函数y=(2a-1)x在R上为减函数,即 0<2a-1<1,$\frac{1}{2}$<a<1,
若p且q为真命题,则有a≤$\frac{2}{3}$,且 $\frac{1}{2}$<a<1,
∴$\frac{1}{2}$<a≤$\frac{2}{3}$,
即a的取值范围是($\frac{1}{2}$,$\frac{2}{3}$],
故选:C.
点评 本题主要考查指数函数的单调性和特殊点,二次函数的性质,复合命题的真假,属于基础题.
科目:高中数学 来源: 题型:选择题
感染 | 未感染 | 总计 | |
服用 | 10 | 40 | 50 |
未服用 | 20 | 30 | 50 |
总计 | 30 | 70 | 100 |
P(K2≥k) | 0.10 | 0.05 | 0.025 |
k | 2.76 | 3.841 | 5.024 |
A. | 在犯错误的概率不超5%过的前提下,认为“小动物是否被感染与有没有服用疫苗有关” | |
B. | 在犯错误的概率不超5%过的前提下,认为“小动物是否被感染与有没有服用疫苗无关” | |
C. | 有97.5%的把握认为“小动物是否被感染与有没有服用疫苗有关” | |
D. | 有97.5%的把握认为“小动物是否被感染与有没有服用疫苗无关” |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | {x|-3<x<0} | B. | {x|-3<x<-1} | C. | {x|x<-1} | D. | {x|-1≤x<0} |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | logab•logbc•logca=1(a,b,c均为不等于1的正数) | |
B. | 若xlog34=1,则${4^x}+{4^{-x}}=\frac{10}{3}$ | |
C. | 函数f(x)=lnx满足f(a+b)=f(a)•f(b)(a,b>0) | |
D. | 函数f(x)=lnx满足f(a•b)=f(a)+f(b)(a,b>0) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com