精英家教网 > 高中数学 > 题目详情
8.设双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的右焦点为1,过F作AF的垂线与双曲线交于B,C两点,过B,C分别作AC,AB的垂线交于点D.若D到直线BC的距离小于a+$\sqrt{{a^2}+{b^2}}$,则该双曲线的离心率的取值范围是(1,$\sqrt{2}$).

分析 由双曲线的对称性知D在x轴上,设D(x,0),则由BD⊥AB得$\frac{\frac{{b}^{2}}{a}}{c-x}•\frac{\frac{{b}^{2}}{a}}{c-a}$=-1,求出c-x,利用D到直线BC的距离小于a+$\sqrt{{a^2}+{b^2}}$,即可得出结论.

解答 解:由题意,A(a,0),B(c,$\frac{{b}^{2}}{a}$),C(c,-$\frac{{b}^{2}}{a}$),由双曲线的对称性知D在x轴上,
设D(x,0),则由BD⊥AC得-$\frac{\frac{{b}^{2}}{a}}{c-x}•\frac{\frac{{b}^{2}}{a}}{c-a}$=-1,
∴c-x=-$\frac{{b}^{4}}{{a}^{2}(a-c)}$,
∵D到直线BC的距离小于a+$\sqrt{{a^2}+{b^2}}$,
∴c-x=|-$\frac{{b}^{4}}{{a}^{2}(a-c)}$|<a+$\sqrt{{a^2}+{b^2}}$,
∴$\frac{{b}^{4}}{{a}^{2}}$<c2-a2=b2
∴0<$\frac{b}{a}$<1,
∵e=$\sqrt{1+(\frac{b}{a})^{2}}$,
∴1<e<$\sqrt{2}$
∴双曲线的离心率的取值范围是(1,$\sqrt{2}$).
故答案为:(1,$\sqrt{2}$).

点评 本题考查双曲线的性质,考查学生的计算能力,确定D到直线BC的距离是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.如图,△OAB是边长为4的等边三角形,记△OAB位于直线x=t(t>0)左侧的图形的面积为f(t),试求函数f(t)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知α∈(π,2π),tanα=$\frac{1}{2}$,则sinα+cosα等于(  )
A.-$\frac{3}{5}$$\sqrt{5}$B.$-\frac{2}{5}\sqrt{5}$C.$\frac{3}{5}\sqrt{5}$D.$-\frac{\sqrt{5}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若不等式组$\left\{\begin{array}{l}{x-y≥0}\\{2x+y≤2}\\{y≥0}\\{x+y≤a}\end{array}\right.$表示的平面区域是一个三角形,则a的取值范围是(  )
A.[$\frac{4}{3}$,+∞)B.(0,1]C.[1,$\frac{4}{3}$]D.(0,1]∪[$\frac{4}{3}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知sinα-sinβ=-$\frac{1}{2}$,cosα-cosβ=$\frac{1}{2}$,α∈(0,$\frac{π}{2}$),β∈(0,$\frac{π}{2}$),求cos(α-β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在数列{an}中,a1=1,an+1=$\frac{{a}_{n}}{1+2{a}_{n}}$(n∈N+).
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若bn=an•an+1,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.直线l与椭圆4x2+y2=4交于P,Q两点,若OP⊥OQ,则l在两坐标轴上的截距乘积最小值为(  )
A.$\frac{5}{6}$B.$\frac{8}{5}$C.2D.$\frac{12}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知△ABC的面积S满足1$≤S≤\sqrt{3}$,且$\overrightarrow{AC}•\overrightarrow{CB}=-2$,∠ACB=θ.
(1)求函数f(θ)=sin($θ-\frac{π}{4}$)+4$\sqrt{2}$sinθcosθ-cos($θ+\frac{π}{4}$)-2的最大值;
(2)若$\overrightarrow{m}$=(sin2A,cos2A),$\overrightarrow{n}$=(cos2B,sin2B),求|2$\overrightarrow{m}$-3$\overrightarrow{n}$|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知下列命题
①b2=ac,则a,b,c成等比数列;
②若{an}为等差数列,且常数c>0,则数列{can}为等比数列;
③若{an}为等比数列,且常数c>0,则数列{can}为等比数列;
④常数列既为等差数列,又是等比数列.
其中,真命题的个数为(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

同步练习册答案