精英家教网 > 高中数学 > 题目详情
若x,y满足约束条件,则目标函数z=2x+y的最大值是( )
A.-3
B.
C.2
D.3
【答案】分析:先满足约束条件 的可行域,然后将各个角点的坐标代入目标函数的解析式,分析比较后,即可得到目标函数z=2x+y的最大值.
解答:解:满足约束条件 的平面区域如下图所示:
由图易得,当x=2,y=-1时,目标函数z=2x+y的最大值为3
故选D.
点评:本题考查的知识点是简单的线性规划,用图解法解决线性规划问题时,分析题目的已知条件,画出满足约束条件的可行域是关键,
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若x,y满足约束条件
x≥0
y≤x
2x+y-4≤0
( k为常数),则使z=x+3y的最大值为(  )
A、9
B、
16
3
C、-12
D、12

查看答案和解析>>

科目:高中数学 来源: 题型:

若x、y满足约束条件
x≥0
x+3y≥4
3x+y≤4
则z=-x+y的最小值为
0
0

查看答案和解析>>

科目:高中数学 来源: 题型:

(理科)若x,y满足约束条件
x≥0
x+2y≥3
2x+y≤3
,则z=x-y的最小值是
-3
-3

查看答案和解析>>

科目:高中数学 来源: 题型:

若x、y满足约束条件
x≥0
y≥0
2x+y-1≤0
则 x+2y
的最大值为
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

若x,y满足约束条件
x-y+1≥0
x+y-3≤0
y≥0
,则z=x+2y的最大值为
 

查看答案和解析>>

同步练习册答案