精英家教网 > 高中数学 > 题目详情

【题目】为办好省运会,计划招募各类志愿者1.2万人.为做好宣传工作,招募小组对15-40岁的人群随机抽取了100人,回答省运会的有关知识,根据统计结果制作了如下的统计图表1、表2

I)分别求出表2中的ax的值;

II)若在第234组回答完全正确的人中,用分层抽样的方法抽取6人,则各组应分别抽取多少人?

III)在(II)的前提下,招募小组决定在所抽取的6人中,随机抽取2人颁发幸运奖,求获奖的2人均来自第3组的概率.

【答案】1 22313

【解析】试题分析:(1)通过频率分布直方图可求出第2,3组人数频率,从而确定其人数,然后即可求出表2中的a、x的值;

(2)根据分层抽样的性质直接计算即可;

(3)列举抽取2人所有基本事件,找出的基本事件,利用古典概型计算即可.

试题解析:

(Ⅰ)由频率直方图可知,第2,3组总人数分别为:20人,30人.

a=0.9×20=18(人).

(Ⅱ)在第2,3,4组回答完全正确的人共有54人,用分层抽样的方法抽取6人,

则各组分别抽取:

2组:

3组: 人;

4组: 人.

∴应在第2,3,4组分别抽取2人,3人,1人.

(Ⅲ)分别记第2组的2人为A1,A2,第3组的3人为B1,B2,B3,第4组的1人为C.

则从6人中随机抽取2人的所有可能的结果为:

(A1,A2),(A1,B1),(A1,B2),(A1,B3),(A1,C),

(A2,B1),(A2,B2),(A2,B3),(A2,C),

(B1,B2),(B1,B3),(B1,C),

(B2,B3),(B2,C),(B3,C)

15种情况.

获奖2人均来自第3组的有:(B1,B2),(B1,B3)(B2,B3)共3种情况.

故获奖2人均来自第3组的概率为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数 .若gx)存在2个零点,则a的取值范围是

A. [–1,0) B. [0,+∞) C. [–1,+∞) D. [1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图为椭圆C:的左、右焦点,D,E是椭圆的两个顶点,椭圆的离心率的面积为.若点在椭圆C上,则点称为点M的一个椭圆,直线与椭圆交于A,B两点,A,B两点的椭圆分别为P,Q.

(1)求椭圆C的标准方程;

(2)问是否存在过左焦点的直线,使得以PQ为直径的圆经过坐标原点?若存在,求出该直线的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在已知空间四边形ABCD中,E、F分别是棱AB、CD的中点,若2EF=BC,且异面直线EF与BC所成的角为60°,则AD与BC所成的角是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在上的可导函数满足,不等式的解集为,则=

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱中,侧棱垂直于底面, 是棱的中点.

证明:平面⊥平面

(Ⅱ)求异面直线所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆轴上的动点,分别切圆两点.

)当的坐标为时,求切线的方程.

)求四边形面积的最小值.

)若,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校要召开学生代表大会,规定各班每10人推选一名代表,当各班人数除以10的余数大于6时再增选一名代表.那么,各班可推选代表人数y与该班人数x之间的函数关系用取整函数y=[x]([x]表示不大于x的最大整数)可以表示为(  )

A. y B. y C. y D. y

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,椭圆的左、右焦点为,右顶点为,上顶点为,若 轴垂直,且.

(1)求椭圆方程;

(2)过点且不垂直于坐标轴的直线与椭圆交于两点,已知点,当时,求满足的直线的斜率的取值范围.

查看答案和解析>>

同步练习册答案