精英家教网 > 高中数学 > 题目详情

【题目】已知抛物线是正常数)上有两点,焦点

甲:

乙:

丙:

丁:.

以上是“直线经过焦点”的充要条件有几个(  )

A.B.C.D.

【答案】B

【解析】

设直线的方程为,将直线的方程与抛物线的方程联立,利用韦达定理验证四个选项结论成立时,实数的值,可以得出“直线经过焦点”的充要条件的个数.

设直线的方程为,则直线轴于点,且抛物线的焦点的坐标为.

将直线的方程与抛物线的方程联立,消去得,

由韦达定理得.

对于甲条件,,得

甲条件是“直线经过焦点”的必要不充分条件;

对于乙条件,,得,此时,直线过抛物线的焦点

乙条件是“直线经过焦点”的充要条件;

对于丙条件,,即

解得,所以,丙条件是“直线经过焦点”的必要不充分条件;

对于丁条件,

化简得,得,所以,丁条件是“直线经过焦点”的必要不充分条件.

综上所述,正确的结论只有个,故选:B.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,由直三棱柱和四棱锥构成的几何体中,,平面平面

(I)求证:

(II)若M为中点,求证:平面

(III)在线段BC上(含端点)是否存在点P,使直线DP与平面所成的角为?若存在,求得值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论的单调性;

(2)若,不等式有且只有两个整数解,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中超足球队的后卫线上一共有7名球员,其中3人只能打中后卫,2人只能打边后卫,2人既能打中后卫又能打边后卫,主教练决定选派4名后卫上场比赛,假设可以随机选派球员.

(1)在选派的4人中至少有2人能打边后卫的概率;

(2)在选派的4人中既能打中后卫又能打边后卫的人数的分布列与期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数aR).

1)讨论yfx)的单调性;

2)若函数fx)有两个不同零点x1x2,求实数a的范围并证明

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“珠算之父”程大为是我国明代伟大数学家,他的应用数学巨著《算法统综》的问世,标志着我国的算法由筹算到珠算转变的完成,程大位在《算法统综》中常以诗歌的形式呈现数学问题,其中有一首“竹筒容米”问题:“家有九节竹一茎,为因盛米不均平,下头三节三升九,上稍四节储三升,唯有中间两节竹,要将米数次第盛,若有先生能算法,也教算得到天明”((注)三升九:升,次第盛;盛米容积依次相差同一数量.)用你所学的数学知识求得中间两节的容积为( )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】图甲中的两条曲线分别表示某理想状态下捕食者和被捕食者数量随时间的变化规律、对捕食者和被捕食者数量之间的关系描述错误的是( )

A. 捕食者和被捕食者数量与时间以年为周期

B. 由图可知,当捕食者数量增多的过程中,被捕食者数量先增多后减少

C. 捕食者和被捕食者数量之间的关系可以用图1乙描述

D. 捕食者的数量在第年和年之间数量在急速减少

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,异面直线互相垂直,,截面分别与相交于点,且平面平面.

(1)求证:平面

(2)求锐二面角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在正方体ABCDA1B1C1D1中,设线段A1C与平面ABC1D1交于点Q,求证:BQD1三点共线.

查看答案和解析>>

同步练习册答案