精英家教网 > 高中数学 > 题目详情

【题目】如图,已知椭圆的离心率是,一个顶点是

)求椭圆的方程;

)设是椭圆上异于点的任意两点,且.试问:直线是否恒过一定点?若是,求出该定点的坐标;若不是,说明理由.

【答案】)直线恒过定点

【解析】

试题分析:()设椭圆C的半焦距为c.求出b利用离心率求出a,即可求解椭圆C的方程;()证法一:直线PQ的斜率存在,设其方程为y=kx+m.将直线PQ的方程代入消去y,设 PQ,利用韦达定理,通过BP⊥BQ,化简求出,求出m,即可得到直线PQ恒过的定点.证法二:直线BPBQ的斜率均存在,设直线BP的方程为y=kx+1,将直线BP的方程代入,消去y,解得x,设 P,转化求出P的坐标,求出Q坐标,求出直线PQ的方程利用直线系方程求出定点坐标

试题解析:()解:设椭圆的半焦距为.依题意,得

解得

所以,椭圆的方程是

)证法一:易知,直线的斜率存在,设其方程为

将直线的方程代入

消去,整理得

.(1

因为,且直线的斜率均存在,

所以, 整理得.(2

因为

所以.(3

将(3)代入(2),整理得

.(4

将(1)代入(4),整理得

解得,或(舍去).

所以,直线恒过定点

证法二:直线的斜率均存在,设直线的方程为

将直线的方程代入,消去,得

解得,或

,所以

所以

替换点坐标中的,可得

从而,直线的方程是

依题意,若直线过定点,则定点必定在轴上.

在上述方程中,令,解得

所以,直线恒过定点

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知

时,求的值;

时,是否存在正整数nr,使得依次构成等差数列?并说明理由;

时,求的值m表示

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设斜率不为0的直线与抛物线交于两点,与椭圆交于两点,记直线的斜率分别为.

(1)求证:的值与直线的斜率的大小无关;

(2)设抛物线的焦点为,若,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=xlnx﹣ x2﹣x+a(a∈R).
(1)当a=0时,求f(x)的单调区间;
(2)若函数f(x)在其定义域内有两个不同的极值点.
(ⅰ)求a的取值范围;
(ⅱ)设两个极值点分别为x1 , x2 , 证明:x1x2>e2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴,建立极坐标系,曲线C1的参数方程为 (θ为参数),曲线 C2的极坐标方程为ρcosθ﹣ ρsinθ﹣4=0.
(1)求曲线C1的普通方程和曲线 C2的直角坐标方程;
(2)设P为曲线C1上一点,Q为曲线 C2上一点,求|PQ|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ﹣ax(a∈R).
(1)当a= 时,求函数f(x)的单调区间;
(2)若函数f(x)在[﹣1,1]上为单调函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在(0, )上的函数f(x),f′(x)为其导函数,且f(x)<f′(x)tanx恒成立,则(
A. f( )> f(
B. f( )<f( )??
C. f( )>f(
D.f(1)<2f( )?sin1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=cos4x+sin2x,下列结论中错误的是(
A.f(x)是偶函数
B.函f(x)最小值为
C. 是函f(x)的一个周期
D.函f(x)在(0, )内是减函数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为为坐标原点,是抛物线上异于的两点.

(1)求抛物线的方程;

(2)若直线的斜率之积为,求证:直线过定点.

查看答案和解析>>

同步练习册答案