精英家教网 > 高中数学 > 题目详情
15.函数y=2sin($\frac{π}{3}$-x)-cos($\frac{π}{6}$+x)(x∈R)最小值为(  )
A.-3B.-2C.-1D.-$\sqrt{5}$

分析 根据题目给出的两个角$\frac{π}{3}$-x与$\frac{π}{6}$+x互为余角,所以变为一个角的三角函数,整理后可求出函数最小值.

解答 解:∵($\frac{π}{6}$+x)+($\frac{π}{3}$-x)=$\frac{π}{2}$,
∴cos($\frac{π}{6}$+x)=sin($\frac{π}{3}$-x),
∴y=2sin($\frac{π}{3}$-x)-cos($\frac{π}{6}$+x)=2sin($\frac{π}{3}$-x)-sin($\frac{π}{3}$-x)=-sin(x-$\frac{π}{3}$).
∵x∈R,即x-$\frac{π}{3}$∈R,
∴当x=2kπ+$\frac{5π}{6}$,k∈Z,ymin=-1.
故选C.

点评 本题考查了两角和与差的正弦,解答此题的关键是运用互为余角关系变为一个角的正弦,此题也可先展开两角和与差的正余弦,然后整理化简,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.在△ABC中,若C=$\frac{π}{4}$,a=6,B=$\frac{π}{6}$,则ab等于(  )
A.36$\sqrt{3}$+36B.6$\sqrt{3}$+6C.3$\sqrt{6}-3\sqrt{2}$D.18$\sqrt{6}-18\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知过点(1,1)的直线与圆x2+y2-4x-6y+4=0相交于A,B两点,则|AB|的最小值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在同一时间段里,有甲、乙两个气象站相互独立地对天气进行预报,若甲气象站对天气预报的准确率为0.8,乙气象站对天气预报的准确率为0.95,在同一时间段里,求:
(1)甲、乙两个气象站对天气预报都准确的概率;
(2)至少有一个气象站对天气预报准确的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设m,n是两条不同的直线,α,β是两个不同的平面(  )
A.若m⊥n,n∥α,则m⊥αB.若m∥β,β⊥α则m⊥α
C.若m∥n,n⊥α则m⊥αD.若m⊥n,n⊥β,β⊥α,则m⊥α

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知某工厂有25周岁以上(含25周岁)工人300名,25周岁以下工人200名.为研究工人的日平均生产量是否与年龄有关,现采用分层抽样的方法,从中抽取了100名工人,先统计了他们某月的日平均生产件数,然后按工人年龄在“25周岁以上(含25周岁)”和“25周岁以下”分为两组,再将两组工人的日平均生产件数分为5组:[50,60),[60,70),[70,80),[80,90),[90,100)分别加以统计,得到如图所示的频率分布直方图.

(1)从样本中日平均生产件数不足60件的工人中随机抽取2人,求至少抽到一名“25周岁以下组”工人的概率.
(2)规定日平均生产件数不少于80件者为“生产能手”,请你根据已知条件完成2×2列联表,并判断是否能在犯错误的概率不超过0.1的前提下认为“生产能手与工人所在的年龄组有关”?(相关系数k=$\frac{n({n}_{11}{n}_{22}-{n}_{12}{n}_{21})^{2}}{{n}_{1}+{n}_{2}+{2}^{n}+1}$,k>2.706时有99%的把握具有相关性)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.某学校研究性学习小组对该校高三学生视力情况进行调查,在高三的全体1000名学生中随机抽取了100名学生的体检表,学习小组成员发现,学习成绩突出的学生,近视的比较多,为了研究学生的视力与学习成绩是否有关系,对年级名次在1~50名和951~1000名的学生进行了调查,得到如下数据:
年级名次
是否近视
1~50951~1000
近视4132
不近视918
(1)根据表中的数据,能否在犯错的概率不超过0.05的前提下认为视力与学习成绩有关系?
(2)根据表中数据,在调查的100名学生中,按照分层抽样在不近视的学生中抽取了9人,进一步调查他们良好的护眼习惯,并且在这9人中任取2人,求成绩名次在1~50名恰有1名的学生的概率.
附:P(K2≥3.841=0.05)K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知a,b是正数,x=$\frac{\sqrt{a}+\sqrt{b}}{\sqrt{2}}$,y=$\sqrt{a+b}$,则x,y的大小关系是(  )
A.x≥yB.x≤yC.x>yD.x<y

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在△ABC中,角A,B,C所对的边分别为a,b,c,若(a+b+c)(a-b+c)=3ac,且tanA+tanC=3+$\sqrt{3}$A<C,AB边上的高为4$\sqrt{3}$,求A,B,C的大小与边a,b,c的长.

查看答案和解析>>

同步练习册答案