精英家教网 > 高中数学 > 题目详情

【题目】设m,n∈R,若直线(m+1)x+(n+1)y﹣2=0与圆(x﹣1)2+(y﹣1)2=1相切,则m+n的取值范围是(
A.[1﹣ ,1+ ]
B.(﹣∞,1﹣ ]∪[1+ ,+∞)
C.[2﹣2 ,2+2 ]
D.(﹣∞,2﹣2 ]∪[2+2 ,+∞)

【答案】D
【解析】解:由圆的方程(x﹣1)2+(y﹣1)2=1,得到圆心坐标为(1,1),半径r=1, ∵直线(m+1)x+(n+1)y﹣2=0与圆相切,
∴圆心到直线的距离d= =1,
整理得:m+n+1=mn≤
设m+n=x,则有x+1≤ ,即x2﹣4x﹣4≥0,
∵x2﹣4x﹣4=0的解为:x1=2+2 ,x2=2﹣2
∴不等式变形得:(x﹣2﹣2 )(x﹣2+2 )≥0,
解得:x≥2+2 或x≤2﹣2
则m+n的取值范围为(﹣∞,2﹣2 ]∪[2+2 ,+∞).
故选D
由圆的标准方程找出圆心坐标和半径r,由直线与圆相切时,圆心到直线的距离等于圆的半径,利用点到直线的距离公式列出关系式,整理后利用基本不等式变形,设m+n=x,得到关于x的不等式,求出不等式的解集得到x的范围,即为m+n的范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知向量 ,定点 的坐标为 ,点 满足 ,曲线 ,区域 ,曲线 与区域 的交集为两段分离的曲线,则( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设△ABC的内角A,B,C的对边分别为a,b,c,满足2asinA=(2b﹣ c)sinB+(2c﹣ b)sinC. (Ⅰ)求角A的大小;
(Ⅱ)若a=2,b=2 ,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱ABC﹣A1B1C1中,侧面BB1C1C为菱形,B1C的中点为O,且AO⊥平面BB1C1C.
(1)证明:B1C⊥AB;
(2)若AC⊥AB1 , ∠CBB1=60°,BC=1,求三棱柱ABC﹣A1B1C1的高.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知α∈[ ],β∈[﹣ ,0],且(α﹣ 3﹣sinα﹣2=0,8β3+2cos2β+1=0,则sin( +β)的值为(
A.0
B.
C.
D.1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l1的方程为3x+4y﹣12=0,
(1)求l2的方程,使得:①l2与l1平行,且过点(﹣1,3); ②l2与l1垂直,且l2与两坐标轴围成的三角形面积为4;
(2)直线l1与两坐标轴分别交于A、B 两点,求三角形OAB(O为坐标原点)内切圆及外接圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在班级的演讲比赛中,将甲、乙两名同学的得分情况制成如图所示的茎叶图.记甲、乙两名同学所得分数的平均分分别为 , 则下列判断正确的是(
A. , 甲比乙成绩稳定
B. 乙,甲比乙成绩稳定
C. , 乙比甲成绩稳定
D. , 乙比甲成绩稳定

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=loga (0<a<1)为奇函数,当x∈(﹣2,2a)时,函数f(x)的值域是(﹣∞,1),则实数a+b=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线方程C:x2+y2﹣2x﹣4y+m=0.
(1)当m=﹣6时,求圆心和半径;
(2)若曲线C表示的圆与直线l:x+2y﹣4=0相交于M,N,且 ,求m的值.

查看答案和解析>>

同步练习册答案