精英家教网 > 高中数学 > 题目详情

已知函数,点为一定点,直线分别与函数的图象和轴交于点,,记的面积为.
(I)当时,求函数的单调区间;
(II)当时, 若,使得, 求实数的取值范围.

(I) 增区间 ,减区间:; (II)  .

解析试题分析:(I) 先表示出 的解析式,应用导数求解担单调区间;(II)转化为使上的最大值大于等于e即可.
试题解析:
(I) 因为,其中                         2分
,其中
时,
所以,所以上递增,                       4分
时,
, 解得,所以上递增
, 解得,所以上递减      7分
综上,的单调递增区间为
的单调递减区间为                                                       
(II)因为,其中
时,
因为,使得,所以上的最大值一定大于等于
,令,得                           8分
时,即
成立,单调递增
所以当时,取得最大值  
 ,解得   ,
所以                                                           10分  
时,即
成立,单调递增
成立,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数().
(1)当时,求函数的单调区间;
(2)当时,取得极值.
① 若,求函数上的最小值;
② 求证:对任意,都有.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题


(Ⅰ)若,讨论的单调性;
(Ⅱ)时,有极值,证明:当时,

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数 
(Ⅰ)若处的切线垂直于直线,求该点的切线方程,并求此时函数的单调区间;
(Ⅱ)若对任意的恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(Ⅰ)求的极值;
(Ⅱ)当时,若不等式上恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知的导函数,且,设

(Ⅰ)讨论在区间上的单调性;
(Ⅱ)求证:
(Ⅲ)求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1) 当时,求函数的单调区间;
(2) 当时,函数图象上的点都在所表示的平面区域内,求实数的取值范围.
(3) 求证:,(其中是自然对数的底).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

规定其中为正整数,且=1,这是排列数(是正整数,)的一种推广.
(Ⅰ) 求的值;
(Ⅱ)排列数的两个性质:①,②(其中m,n是正整数).是否都能推广到(是正整数)的情形?若能推广,写出推广的形式并给予证明;若不能,则说明理由;
(Ⅲ)已知函数,试讨论函数的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数(为非零常数).
(Ⅰ)当时,求函数的最小值; 
(Ⅱ)若恒成立,求的值;
(Ⅲ)对于增区间内的三个实数(其中),
证明:.

查看答案和解析>>

同步练习册答案