精英家教网 > 高中数学 > 题目详情

【题目】椭圆 的左、右焦点分别为F1(﹣c,0)、F2(c,0),过椭圆中心的弦PQ满足|PQ|=2,∠PF2Q=90°,且△PF2Q的面积为1.
(Ⅰ)求椭圆的方程;
(Ⅱ)直线l不经过点A(0,1),且与椭圆交于M,N两点,若以MN为直径的圆经过点A,求证:直线l过定点,并求出该定点的坐标.

【答案】解:(Ⅰ)∠PF2Q=90°平行四边形PF1QF2为矩形,

|F1F2|=|PQ|=2c=1

又PF1+PF2=2a,得a2=2,b2=1,

椭圆方程: ….

(Ⅱ)解:设直线l:y=kx+m,M(x1,y1),N(x2,y2),

….

以MN为直径的圆经过点A,

3m2﹣2m﹣1=0….

又直线不经过A(0,1),所以m≠1,

直线l:y=kx﹣

直线经过定点


【解析】(1)由可得出四边形为矩形,再根据椭圆定义,可得椭圆标准方程;(2)设出直线方程,联立椭圆方程,根据韦达定理,可得直线方程,不难得出直线过定点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知极坐标系的极点在直角坐标系的原点,极轴与x轴的正半轴重合,曲线C的极坐标方程为ρ2cos2θ+3ρ2sin2θ=3,直线l的参数方程为 .试在曲线C上求一点M,使它到直线l的距离最大.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lnx+x2
(Ⅰ)若函数g(x)=f(x)﹣ax在其定义域内为增函数,求实数a的取值范围;
(Ⅱ)在(Ⅰ)的条件下,若a>1,h(x)=e3x﹣3aexx∈[0,ln2],求h(x)的极小值;
(Ⅲ)设F(x)=2f(x)﹣3x2﹣kx(k∈R),若函数F(x)存在两个零点m,n(0<m<n),且2x0=m+n.问:函数F(x)在点(x0 , F(x0))处的切线能否平行于x轴?若能,求出该切线方程;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}是公差为2的等差数列,数列{bn}满足 ,若n∈N*时,anbn+1﹣bn+1=nbn
(Ⅰ)求{bn}的通项公式;
(Ⅱ)设 ,求{Cn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】直线x+2y=m(m>0)与⊙O:x2+y2=5交于A,B两点,若| + |>2| |,则m的取值范围是(  )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=aex﹣2x﹣2a,且a∈[1,2],设函数f(x)在区间[0,ln2]上的最小值为m,则m的取值范围是(  )
A.[﹣2,﹣2ln2]
B.[﹣2,﹣ ]
C.[﹣2ln2,﹣1]
D.[﹣1,﹣ ]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=﹣x3+x2(x∈R),g(x)满足g′(x)= (a∈R,x>0),且g(e)=a,e为自然对数的底数.
(Ⅰ)已知h(x)=e1﹣xf(x),求h(x)在(1,h(1))处的切线方程;
(Ⅱ)若存在x∈[1,e],使得g(x)≥﹣x2+(a+2)x成立,求a的取值范围;
(Ⅲ)设函数F(x)= ,O为坐标原点,若对于y=F(x)在x≤﹣1时的图象上的任一点P,在曲线y=F(x)(x∈R)上总存在一点Q,使得 <0,且PQ的中点在y轴上,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某中学高三文科班学生共有800人参加了数学与地理的水平测试,学校决定利用随机数表法从中抽取100人进行成绩抽样调查,先将800人按001,002,…,800进行编号.
(1)如果从第8行第7列的数开始向右读,请你依次写出最先检查的3个人的编号;(下面摘取了第7行到第9行)
84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76
63 01 63 78 59 16 95 56 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79
33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54
(2)抽取的100人的数学与地理的水平测试成绩如下表:

人数

数学

优秀

良好

及格

地理

优秀

7

20

5

良好

9

18

6

及格

a

4

b

成绩分为优秀、良好、及格三个等级;横向、纵向分别表示地理成绩与数学成绩,例如:表中数学成绩为良好的人数共有20+18+4=42.
①若在该样本中,数学成绩优秀率是30%,求a,b的值;
②在地理成绩及格的学生中,已知a≥11,b≥7,求数学成绩优秀人数比及格人数少的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出关于双曲线的三个命题:
①双曲线 =1的渐近线方程是y=± x;
②若点(2,3)在焦距为4的双曲线 =1上,则此双曲线的离心率e=2;
③若点F,B分别是双曲线 =1的一个焦点和虚轴的一个端点,则线段FB的中点一定不在此双曲线的渐近线上.
其中正确命题的个数是(  )
A.0
B.1
C.2
D.3

查看答案和解析>>

同步练习册答案