A. | -$\sqrt{5}$ | B. | -$\frac{\sqrt{6}}{2}$ | C. | -$\sqrt{6}$ | D. | -$\sqrt{2}$ |
分析 由椭圆的参数方程可得a=cosα,b=$\frac{\sqrt{2}}{2}$sinα(0≤α<2π),运用三角函数的辅助角公式和正弦函数的值域,即可得到最小值.
解答 解:a,b∈R,a2+2b2=1,
可设a=cosα,b=$\frac{\sqrt{2}}{2}$sinα(0≤α<2π),
则a-b=cosα-$\frac{\sqrt{2}}{2}$sinα=$\sqrt{1+\frac{1}{2}}$sin(α-θ)
=$\frac{\sqrt{6}}{2}$sin(α-θ),
当α-θ=$\frac{3π}{2}$时,a-b取得最小值,且为-$\frac{\sqrt{6}}{2}$.
故选:B.
点评 本题考查椭圆的参数方程的运用,考查三角函数的最值的求法,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | y=f(x)是偶函数 | B. | y=f(x)的周期为π | ||
C. | y=f(x)的图象关于直线$x=\frac{π}{2}$对称 | D. | y=f(x)的图象关于点$(-\frac{π}{2},0)$对称 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 2$\sqrt{2}$+2 | B. | $\sqrt{2}+1$ | C. | 5 | D. | $\frac{5}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com