精英家教网 > 高中数学 > 题目详情
19.已知a,b∈R,a2+2b2=1,则a-b的最小值为(  )
A.-$\sqrt{5}$B.-$\frac{\sqrt{6}}{2}$C.-$\sqrt{6}$D.-$\sqrt{2}$

分析 由椭圆的参数方程可得a=cosα,b=$\frac{\sqrt{2}}{2}$sinα(0≤α<2π),运用三角函数的辅助角公式和正弦函数的值域,即可得到最小值.

解答 解:a,b∈R,a2+2b2=1,
可设a=cosα,b=$\frac{\sqrt{2}}{2}$sinα(0≤α<2π),
则a-b=cosα-$\frac{\sqrt{2}}{2}$sinα=$\sqrt{1+\frac{1}{2}}$sin(α-θ)
=$\frac{\sqrt{6}}{2}$sin(α-θ),
当α-θ=$\frac{3π}{2}$时,a-b取得最小值,且为-$\frac{\sqrt{6}}{2}$.
故选:B.

点评 本题考查椭圆的参数方程的运用,考查三角函数的最值的求法,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=$\frac{{x}^{2}-1}{{x}^{2}}$.
(1)证明f(x)为偶函数;
(2)若不等式k≤xf(x)+$\frac{1}{x}$在x∈[1,3]上恒成立,求实数k的取值范围;
(3)当x∈[$\frac{1}{m}$,$\frac{1}{n}$](m>0,n>0)时,函数g(x)=tf(x)+1,(t≥0)的值域为[2-3m,2-3n],求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设点A的坐标为(a,0)(a∈R),则曲线y2=2x上的点到A点的距离的最小值为$\left\{\begin{array}{l}{\sqrt{2a-1},a≥1}\\{|a|,a<1}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.用tanα表示$\frac{sinα+cosα}{2sinα-cosα}$,sin2α+sinαcosα+3cos2α.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.以下四个命题中所有真命题的序号为①③.
①点A(1,2)关于直线y=x-1的对称点的坐标为(3,0);
②已知正方体的棱长等于2,那么正方体外接球的半径是2$\sqrt{3}$;
③图1所示的正方体ABCD-A1B1C1D1中,异面直线A1C1与B1C成60°的角;
④图2所示的正方形O′A′B′C′是水平放置的一个平面图形的直观图,则原图形是矩形.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.将下列各角化成弧度制下的角,并指出是第几象限.
(1)-1725°;
(2)-60°+360°k(k∈z).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.己知全集U=R,集合A={y|y=2x},B={x|-1≤x≤3},C={x|a-1≤x≤2a}.
(1)求(∁UB)∩A;
(2)若A∩C=∅,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.将函数y=cosx的图象向右平移$\frac{π}{2}$个单位,得到函数y=f(x)的图象,则下列说法正确的是(  )
A.y=f(x)是偶函数B.y=f(x)的周期为π
C.y=f(x)的图象关于直线$x=\frac{π}{2}$对称D.y=f(x)的图象关于点$(-\frac{π}{2},0)$对称

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.一个四面体的面都是直角三角形,且这些直角三角形中有三条直角边的长均为1,则这个四面体的表面积为(  )
A.2$\sqrt{2}$+2B.$\sqrt{2}+1$C.5D.$\frac{5}{2}$

查看答案和解析>>

同步练习册答案