精英家教网 > 高中数学 > 题目详情

【题目】在正方体中,分别是棱的中点,分别是线段上的点,则与平面平行的直线有(

A.0B.1C.2D.无数条

【答案】D

【解析】

的中点连接,在上任取一点,过在面中,作平行于,其中为线段的中点,交,再过,交,连接,根据线面平行的判定定理,得到平面平面再根据面面平行的判断定理得到平面平面由面面平行的性质得到则平面,由于是任意的,故有无数条

如图:

的中点,连接,则

连接,在上任取一点

在面中,作平行于

其中为线段的中点,交

再过,交,连接

在平面的正投影为,连接,则

由于平面

平面

所以平面

同理由,可推得平面

由面面平行的判定定理得,平面平面

平面

由于上任一点,故这样的直线有无数条

故选

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

1)求函数上的单调递增区间;

2)将函数的图象向左平移个单位长度,再将图象上所有点的横坐标伸长到原来的倍(纵坐标不变),得到函数的图象.求证:存在无穷多个互不相同的整数,使得.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】长轴长为的椭圆的中心在原点,其焦点轴上,抛物线的顶点在原点,对称轴为轴,两曲线在第一象限内相交于点, 且的面积为3.

(1)求椭圆和抛物线的标准方程;

(2)过点作直线分别与抛物线和椭圆交于,若,求直线的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】记点到图形上每一个点的距离的最小值称为点到图形的距离,那么平面内到定圆的距离与到定点的距离相等的点的轨迹不可能是

A.B.椭圆C.双曲线的一支D.直线

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现有六名百米运动员参加比赛,甲、乙、丙、丁四名同学猜测谁跑了第一名.甲猜不是就是;乙猜不是;丙猜不是中任一个;丁猜是中之一,若四名同学中只有一名同学猜对,则猜对的是(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于数列,称(其中)为数列的前k项“波动均值”.若对任意的,都有,则称数列为“趋稳数列”.

1)若数列12为“趋稳数列”,求的取值范围;

2)若各项均为正数的等比数列的公比,求证:是“趋稳数列”;

3)已知数列的首项为1,各项均为整数,前项的和为. 且对任意,都有, 试计算:).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为函数为定义域)图像上的一个动点,为坐标原点,为点与点两点间的距离.

1)若,求的最大值与最小值;

2)若,是否存在实数,使得的最小值不小于2?若存在,请求出的取值范围;若不存在,则说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数).以坐标原点为极点,轴的非负半轴为极轴建立极坐标系,曲线的极坐标方程为

1)求曲线的普通方程和的直角坐标方程;

2)过点作倾斜角为的直线两点,过作与平行的直线点,若,求

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业在精准扶贫行动中,决定帮助一贫困山区将水果运出销售.现有8辆甲型车和4辆乙型车,甲型车每次最多能运6吨且每天能运4次,乙型车每次最多能运10吨且每天能运3次,甲型车每天费用320元,乙型车每天费用504元.若需要一天内把180吨水果运输到火车站,则通过合理调配车辆,运送这批水果的费用最少为(

A.2400B.2560C.2816D.4576

查看答案和解析>>

同步练习册答案