精英家教网 > 高中数学 > 题目详情
11.设函数f(x)=|x+2|+|x-2|,x∈R,不等式f(x)≤6的解集为M.
(1)求M;
(2)当a,b∈M时,求证:$\sqrt{3}|{a+b}|≤|{ab+3}|$.

分析 (1)|x+2|+|x-2|≤6等价于$\left\{{\begin{array}{l}{x≤-2}\\{-2x≤6}\end{array}}\right.$或$\left\{{\begin{array}{l}{-2≤x≤2}\\{4≤6}\end{array}}\right.$或$\left\{{\begin{array}{l}{x≥2}\\{2x≤6}\end{array}}\right.$,由此能求出集合M.
(2)当a,b∈M,即-3≤b≤3时,要证$\sqrt{3}•|{a+b}|≤|{ab+3}|$,即证3(a+b)2≤(ab+3)2.由此能证明$\sqrt{3}|{a+b}|≤|{ab+3}|$.

解答 解:(1)|x+2|+|x-2|≤6等价于$\left\{{\begin{array}{l}{x≤-2}\\{-2x≤6}\end{array}}\right.$或$\left\{{\begin{array}{l}{-2≤x≤2}\\{4≤6}\end{array}}\right.$或$\left\{{\begin{array}{l}{x≥2}\\{2x≤6}\end{array}}\right.$,
解得-3≤x≤3,
∴M=[-3,3].
证明:(2)当a,b∈M,即-3≤b≤3时,
要证$\sqrt{3}•|{a+b}|≤|{ab+3}|$,即证3(a+b)2≤(ab+3)2
∵3(a+b)2-(ab+3)2
=3(a2+2ab+b2)-(a2b2+6ab+9)
=3a2+3b2-a2b2-9
=(a2-3)(3-b2)≤0,
∴$\sqrt{3}|{a+b}|≤|{ab+3}|$.

点评 本题考查集合的求法,考查不等式的证明,是中档题,解题时要认真审题,注意不等式性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知x=1是函数f(x)=xa+b的一个零点.
(1)若函数f(x)在点(1,f(1))处的切线的斜率为2,求f(x)的解析式;
(2)设g(x)=f(x)+ln(1+e-2x),且g(x)是偶函数,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设函数f(x)=-2x2+ax-lnx(a∈R),g(x)=$\frac{ex}{{e}^{x}}$+3.
(I)若函数f(x)在定义域内单调递减,求实数a的取值范围;
(II)若对任意x∈(0,e),都有唯一的xo∈[e-4,e],使得g(x)=f(xo)+2xo2成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=lnx与g(x)=a-x($\frac{1}{e}$≤x≤e)的图象上恰好存在唯一一个关于x轴对称的点,则实数a的取值范围为(  )
A.[1,e-1]B.{1}∪($\frac{1}{e}$+1,e-1]C.[1,$\frac{1}{e}$+1]D.($\frac{1}{e}$+1,e-1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.如图,矩形ABCD与矩形ADEF所在的平面互相垂直,将△DEF沿FD翻折,翻折后的点E(记为点P)恰好落在BC上,设AB=1,FA=x(x>1),AD=y,则以下结论正确的是(  )
A.当x=2时,y有最小值$\frac{4\sqrt{3}}{3}$B.当x=2时,有最大值$\frac{4\sqrt{3}}{3}$
C.当x=$\sqrt{2}$时,y有最小值2D.当x=$\sqrt{2}$时,y有最大值2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某公司4个店某月销售额和利润如表:
商店名称ABCD
销售额(x)/千万元2356
利润额(y)/百万元2334
(1)画出销售额关于利润额的散点图.
(20若销售额和利润额具有相关关系,用最小二乘法计算利润额y对销售额x的回归直线方程.$b=\frac{{{x_1}{y_1}+{x_2}{y_2}+…+{x_n}{y_n}-n\overline x\overline y}}{{{x_1}^2+x{{{\;}_2}^2}+…+{x_n}^2-n{{\overline x}^2}}}$,$a=\overline y-b\overline x$(精确到0.1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.某几何体的三视图如图所示,则该几何体的表面积是$16+6\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=x3-mx.
(1)求函数f(x)的单调区间;
(2)当m=1时,令g(x)=$\frac{a{x}^{2}+ax}{f(x)}$+lnx,若函数y=g(x)在(0,$\frac{1}{e}$)内有极值,对?t∈(1,+∞),?s∈(0,1),求证:g(t)-g(s)>e+2-$\frac{1}{e}$.

查看答案和解析>>

同步练习册答案