分析 (1)|x+2|+|x-2|≤6等价于$\left\{{\begin{array}{l}{x≤-2}\\{-2x≤6}\end{array}}\right.$或$\left\{{\begin{array}{l}{-2≤x≤2}\\{4≤6}\end{array}}\right.$或$\left\{{\begin{array}{l}{x≥2}\\{2x≤6}\end{array}}\right.$,由此能求出集合M.
(2)当a,b∈M,即-3≤b≤3时,要证$\sqrt{3}•|{a+b}|≤|{ab+3}|$,即证3(a+b)2≤(ab+3)2.由此能证明$\sqrt{3}|{a+b}|≤|{ab+3}|$.
解答 解:(1)|x+2|+|x-2|≤6等价于$\left\{{\begin{array}{l}{x≤-2}\\{-2x≤6}\end{array}}\right.$或$\left\{{\begin{array}{l}{-2≤x≤2}\\{4≤6}\end{array}}\right.$或$\left\{{\begin{array}{l}{x≥2}\\{2x≤6}\end{array}}\right.$,
解得-3≤x≤3,
∴M=[-3,3].
证明:(2)当a,b∈M,即-3≤b≤3时,
要证$\sqrt{3}•|{a+b}|≤|{ab+3}|$,即证3(a+b)2≤(ab+3)2.
∵3(a+b)2-(ab+3)2
=3(a2+2ab+b2)-(a2b2+6ab+9)
=3a2+3b2-a2b2-9
=(a2-3)(3-b2)≤0,
∴$\sqrt{3}|{a+b}|≤|{ab+3}|$.
点评 本题考查集合的求法,考查不等式的证明,是中档题,解题时要认真审题,注意不等式性质的合理运用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | [1,e-1] | B. | {1}∪($\frac{1}{e}$+1,e-1] | C. | [1,$\frac{1}{e}$+1] | D. | ($\frac{1}{e}$+1,e-1] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 当x=2时,y有最小值$\frac{4\sqrt{3}}{3}$ | B. | 当x=2时,有最大值$\frac{4\sqrt{3}}{3}$ | ||
C. | 当x=$\sqrt{2}$时,y有最小值2 | D. | 当x=$\sqrt{2}$时,y有最大值2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
商店名称 | A | B | C | D |
销售额(x)/千万元 | 2 | 3 | 5 | 6 |
利润额(y)/百万元 | 2 | 3 | 3 | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com