精英家教网 > 高中数学 > 题目详情
4.如图,圆O的直径AB=10,C为圆上一点,BC=6.过C作圆O的切线l,AD⊥l于点D,且交圆O于点E,求DE长.

分析 由题意AC⊥BC,AC=$\sqrt{100-36}$=8,由已知得Rt△ACD∽Rt△ABC,从而AD=6.4,利用切割线定理、勾股定理,由此能求出DE的长.

解答 解:由题意AC⊥BC.AC=$\sqrt{100-36}$=8,
∵过C作圆的切线l,过A作l的垂线AD,垂足为D,AD交圆与E,
∴∠ACD=∠ABC,∴Rt△ACD∽Rt△ABC,
∴$\frac{AC}{AB}$=$\frac{AD}{AC}$,
∴AD=$\frac{64}{10}$=6.4
又DC2=DE•6.4,DC2+6.42=64,
解得DE=3.6.

点评 本题考查线段长的求法,是中档题,解题时要认真审题,注意弦切角性质、切割线定理的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.[普通高中]设不等式x2-2ax+a+2≤0的解集为非空数集M,且M⊆[1,4],求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.不等式-x2-x+2<0的解集为(  )
A.{x|x<-2或 x>1 }B.{x|-2<x<1 }C.{x|x<-1 或x>2 }D.{x|-1<x<2 }

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,在斜三棱柱ABC-A1B1C1中,侧面ACC1A1与侧面CBB1C1都是菱形,∠ACC1=∠CC1B1=60°,AC=2.
(1)求证:AB1⊥CC1
(2)若$A{B_1}=\sqrt{6}$,求二面角C-AB1-A1的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=ax-lnx有极小值1+ln2
(Ⅰ)求实数a的值;
(Ⅱ)设g(x)=3x-3lnx-1-f(x),讨论g(x)单调性;
(Ⅲ)若0<x1<x2,求证:$\frac{{x}_{1}-{x}_{2}}{ln{x}_{1}-ln{x}_{2}}$<2x2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在四棱锥P-ABCD中,PA⊥平面ABCD,△ABC是正三角形,AC与BD的交点M恰好是AC中点,又PA=4,AB=4$\sqrt{3}$,∠CDA=120°,点N在线段PB上,且PN=2.
(1)求证:BD⊥PC;
(2)求证:MN∥平面PDC;
(3)求二面角A-PC-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=x2-(-1)n2alnx(n∈Z,a>0).
(Ⅰ)求函数f(x)的极值;
(Ⅱ)若n=2016,且函数y=2ax-f(x)有唯一零点x0,求x0与a.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,AB切⊙O于点B,点G为AB的中点,过G作⊙O的割线交⊙O于点C、D,连接AC并延长交⊙O于点E,连接AD并交⊙O于点F,求证:EF∥AB.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.函数y=cos2x+3sinx的值域是(  )
A.$[{-4,\frac{17}{8}}]$B.$(-∞,-4)∪(\frac{17}{8},+∞)$C.[-4,4]D.(-∞,-4)∪(4,+∞)

查看答案和解析>>

同步练习册答案