精英家教网 > 高中数学 > 题目详情
10.已知函数f(x)=lnx-ax2,且函数f(x)在点(2,f(2))处的切线的一个方向向量是(2,-3).
(1)若关于x的方程f(x)+$\frac{3}{2}$x2=3x-b在区间[$\frac{1}{2}$,2]上恰有两个不相等的实数根,求实数b的取值范围;
(2)证明:$\sum_{k=2}^{n}$$\frac{1}{\frac{1}{2}{k}^{2}+f(k)}$>$\frac{3{n}^{2}-n-2}{2n(n+1)}$(n∈N,n≥2)

分析 (1)求出函数的导数,求得切线的斜率,解方程可得a的值,由题意可得lnx+x2-3x=-b在[$\frac{1}{2}$,2]上恰有两个不相等的实数根,即为g(x)=lnx+x2-3x和直线y=-b在[$\frac{1}{2}$,2]上有两个交点,求得g(x)的导数,可得单调区间,即可得到所求b的范围;
(2)可得当x>1时,f′(x)<0,f(x)递减.即有lnx-$\frac{1}{2}$x2<-$\frac{1}{2}$,即为lnx<$\frac{1}{2}$(x2-1),即有$\frac{1}{lnx}$>$\frac{2}{{x}^{2}-1}$=$\frac{1}{x-1}$-$\frac{1}{x+1}$,可令x=2,3,…,n,累加即可得证.

解答 解:(1)函数f(x)=lnx-ax2的导数为f′(x)=$\frac{1}{x}$-2ax,
由题意可得在点(2,f(2))处的切线斜率为$\frac{1}{2}$-4a=-$\frac{3}{2}$,
解得a=$\frac{1}{2}$,
即有f(x)=lnx-$\frac{1}{2}$x2
由题意可得lnx+x2-3x=-b在[$\frac{1}{2}$,2]上恰有两个不相等的实数根,
即为g(x)=lnx+x2-3x和直线y=-b在[$\frac{1}{2}$,2]上有两个交点,
由g(x)的导数为g′(x)=$\frac{1}{x}$+2x-3=$\frac{(2x-1)(x-1)}{x}$,
当$\frac{1}{2}$<x<1时,g′(x)<0,g(x)递减;
当1<x<2时,g′(x)>0,g(x)递增.
则有g(1)<-b≤g($\frac{1}{2}$),
即为-2<-b≤-ln2-$\frac{5}{4}$,解得ln2+$\frac{5}{4}$≤b<2;
(2)证明:由f(x)=lnx-$\frac{1}{2}$x2的导数为f′(x)=$\frac{1}{x}$-x=$\frac{1-{x}^{2}}{x}$,
当x>1时,f′(x)<0,f(x)递减.
即有lnx-$\frac{1}{2}$x2<-$\frac{1}{2}$,即为lnx<$\frac{1}{2}$(x2-1),
即有$\frac{1}{lnx}$>$\frac{2}{{x}^{2}-1}$=$\frac{1}{x-1}$-$\frac{1}{x+1}$,
则有$\frac{1}{ln2}$+$\frac{1}{ln3}$+…+$\frac{1}{lnn}$>1-$\frac{1}{3}$+$\frac{1}{2}$-$\frac{1}{4}$+…+$\frac{1}{n-2}$-$\frac{1}{n}$+$\frac{1}{n-1}$-$\frac{1}{n+1}$
=1+$\frac{1}{2}$-$\frac{1}{n}$-$\frac{1}{n+1}$=$\frac{3{n}^{2}-n-2}{2n(n+1)}$.

点评 本题考查导数的运用:求切线的斜率和单调性,考查函数方程的转化思想和不等式的证明,注意运用函数的单调性和累加法,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.解关于x的不等式:12x2-ax-a2<0(a∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设函数f(x)=$\overrightarrow{m}$$•\overrightarrow{n}$,其中向量$\overrightarrow{m}$=(2cosx,1),$\overrightarrow{n}$=(cosx,$\sqrt{3}$sin2x),x∈R.
(1)求f(x)的单调递增区间;
(2)求f(x)在[0,$\frac{π}{2}$]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若不等式ax2+3x+5>0在区间[1,6]上恒成立,则实数a的取值范围为a>-$\frac{23}{36}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在△ABC中,$\overrightarrow{AB}$=(2cosα,2sinα),$\overrightarrow{BC}$=(5cosβ,5sinβ),若$\overrightarrow{AB}$$•\overrightarrow{BC}$=-5,则|$\overrightarrow{AC}$|=(  )
A.4B.$\sqrt{10}$C.$\sqrt{19}$D.25

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.计算:3${\;}^{lo{g}_{3}2}$-2(log34)(log827)-$\frac{1}{3}$log68+2log${\;}_{\frac{1}{6}}$$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=$\left\{\begin{array}{l}{sinx,x≥1}\\{{e}^{x},x<1}\end{array}\right.$.
(1)若f(x)≥1,求x的取值范围;
(2)求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知数列{an}的各项均正数,满足a${\;}_{n+1}^{2}$-a${\;}_{n}^{2}$-2an+1-2an=0,其前n项和为Sn.S1,S2,S4成等比数列.
(1)求数列{an}的通项公式;
(2)令bn=(-1)n-1$\frac{4n}{{a}_{n}{a}_{n+1}}$,数列{bn}的前n项和为Tn,是否存在最大整数m,使得对任意n∈N*均有T2n>$\frac{m}{15}$成立?若存在,求出m的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆C:4x2+y2=16
(1)求椭圆C的长轴长和短轴长    
(2)求椭圆C的焦点坐标和离心率
(3)直线l:y=-2x+4与椭圆C相交于A,B两点,求AB的长.

查看答案和解析>>

同步练习册答案