【题目】设函数由方程到确定,对于函数给出下列命题:
①对任意,都有恒成立:
②,使得且同时成立;
③对于任意恒成立;
④对任意,,
都有恒成立.其中正确的命题共有( )
A.1个B.2个C.3个D.4个
【答案】B
【解析】
分四类情况进行讨论,画出相对应的函数图象,由函数图象判断所给命题的真假性.
由方程知,
当x≥0且y≥0时,方程为y2=1;
当x<0且y<0时,方程为y2=1,不成立;
当x≥0且y<0时,方程为y2=1;
当x<0且y≥0时,方程为y2=1;
作出函数f(x)的图象如图所示,
对于①,f(x)是定义域R上的单调减函数,则
对任意x1,x2∈R,x1≠x2,都有恒成立,①正确;
对于②,假设点(a,b)在第一象限,则点(b,a)也在第一象限,
所以,该方程组没有实数解,所以该情况不可能;
假设点(a,b)在第四象限,则点(b,a)在第二象限,
所以,该方程组没有实数解,所以该种情况不可能;
同理点(a,b)在第二象限,则点(b,a)在第四象限,也不可能.
故该命题是假命题.
对于③,由图形知,对于任意x∈R,有f(x)x,
即2f(x)+x>0恒成立,③正确;
对于④,不妨令t,则tf(x1)+(1﹣t)f(x2)﹣f[tx1+(1﹣t)x2]>0为
f(),不是恒成立,所以④错误.
综上知,正确的命题序号是①③.
故选:B.
科目:高中数学 来源: 题型:
【题目】已知数列的奇数项是首项为1的等差数列,偶数项是首项为2的等比数列.设数列的前n项和为且满足
(1)求数列的通项公式;
(2)若求正整数的值;
(3)是否存在正整数,使得恰好为数列的一项?若存在,求出所有满足条件的正整数;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设数列的前n项和为,若对任意正整数n,总存在正整数m,使得,则称是“H数列”;
(1)若数列的前n项和(),判断数列是否是“H数列”?若是,给出证明;若不是,说明理由;
(2)设数列是常数列,证明:为“H数列”的充要条件是;
(3)设是等差数列,其首项,公差,若是“H数列”,求d的值;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(数学文卷·2017届重庆十一中高三12月月考第16题) 现介绍祖暅原理求球体体积公式的做法:可构造一个底面半径和高都与球半径相等的圆柱,然后在圆柱内挖去一个以圆柱下底面圆心为顶点,圆柱上底面为底面的圆锥,用这样一个几何体与半球应用祖暅原理(图1),即可求得球的体积公式.请研究和理解球的体积公式求法的基础上,解答以下问题:已知椭圆的标准方程为 ,将此椭圆绕y轴旋转一周后,得一橄榄状的几何体(图2),其体积等于______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设,,其中m是不等于零的常数.
(1)时,直接写出的值域;
(2)求的单调递增区间;
(3)已知函数,,定义:,,,,其中,表示函数在上的最小值,表示函数在上的最大值.例如:,,则,,,.当时,恒成立,求n的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在极坐标系中,已知曲线的方程为,曲线的方程为.以极点为原点,极轴为轴正半轴建立直角坐标系.
(1)求曲线,的直角坐标方程;
(2)若曲线与轴相交于点,与曲线相交于,两点,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知,函数.
(1)是函数数的导函数,记,若在区间上为单调函数,求实数a的取值范围;
(2)设实数,求证:对任意实数,总有成立.
附:简单复合函数求导法则为.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等差数列的前项和为,并且,,数列满足:,,记数列的前项和为.
(1)求数列的通项公式及前项和公式;
(2)求数列的通项公式及前项和公式;
(3)记集合,若的子集个数为16,求实数的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com