精英家教网 > 高中数学 > 题目详情

【题目】为了解本市居民的生活成本,甲乙丙三名同学利用假期分别对三个社区进行了“家庭每月日常消费额”的调查.他们将调查所得的数据分别绘制成频率分布直方图(如图所示),记甲乙丙所调查数据的标准差分别为,,,则它们的大小关系为__________.

(甲)

(乙)

(丙)

【答案】

【解析】

第二组数据是单峰的每一个小长方形的差别比较小,数字数据较分散,各个段内分布均匀,第一组数据的两端数字较多,绝大部分数字都处在两端最分散,而第三组数据绝大部分数字都在平均数左右,是集中,由此得到结果.

解:根据三个频率分步直方图知,

第一组数据的两端数字较多,绝大部分数字都处在两端数据偏离平均数远,最分散,其方差最大;

第二组数据绝大部分数字都在平均数左右,数据最集中,故其方差最小,

而第三组数据是单峰的每一个小长方形的差别比较小,数字分布均匀,数据不如第一组偏离平均数大,方差比第一组中数据中的方差小,

总上可知

故答案为:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】年诺贝尔生理学或医学奖获得者威廉·凯林(WilliamG.KaelinJr)在研究肾癌的抑制剂过程中使用的输液瓶可以视为两个圆柱的组合体.开始输液时,滴管内匀速滴下液体(滴管内液体忽略不计),设输液开始后分钟,瓶内液面与进气管的距离为厘米,已知当时,.如果瓶内的药液恰好分钟滴完.则函数的图像为(

A.B.

C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了1至6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:

该兴趣小组确定的研究方案是:先用2、3、4、5月的4组数据求线性回归方程,再用1月和6月的2组数据进行检验.

(1)请根据2、3、4、5月的数据,求出y关于x的线性回归方程

(2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该小组所得线性回归方程是否理想?

(参考公式:

参考数据:11×25+13×29+12×26+8×16=1092,112+132+122+82=498.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地区今年1月,2月,3月患某种传染病的人数分别为424852.为了预测以后各月的患病人数,甲选择了模型,乙选择了模型,其中为患病人数,为月份数,abcpqr都是常数.结果4月,5月,6月份的患病人数分别为545758.

1)求abcpqr的值;

2)你认为谁选择的模型好.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】关于茎叶图的说法,结论错误的一个是( )

A. 甲的极差是29 B. 甲的中位数是25

C. 乙的众数是21 D. 甲的平均数比乙的大

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,底面是边长为3的正方形,平面与平面所成的角为.

(1)求证:平面平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.若函数f(x)有两个极值点x1,x2,记过点A(x1,f(x1))和B(x2,f(x2))的直线斜率为k,若0<k≤2e,则实数m的取值范围为(  )

A. B. (e,2e] C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若对任意恒成立,求实数的取值范围;

(2)当时,若函数有两个极值点,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方体中,的中点.

1)求证:平面

2)求证:平面平面.(只需在下面横线上填写给出的如下结论的序号:①平面,②平面,③,④,⑤

证明:(1)设,连接.因为底面是正方形,所以的中点,又的中点,所以_________.因为平面____________,所以平面.

2)因为平面平面,所以___________,因为底面是正方形,所以_______,又因为平面平面,所以_________.平面,所以平面平面.

查看答案和解析>>

同步练习册答案