精英家教网 > 高中数学 > 题目详情
3.平面内到两定点F1(-3,0)、F2(3,0)的距离之差的绝对值等于4的点M的轨迹(  )
A.椭圆B.线段C.两条射线D.双曲线

分析 根据双曲线的定义,平面内到两定点的距离的差的绝对值等于常数(小于两点间的距离)的点的轨迹是双曲线,即可得出结论.

解答 解:根据双曲线的定义,
|MF1|-|MF2|=±4,
且|F1F2|=6>4,
∴点M的轨迹是焦点在x轴上的双曲线,且焦距为6.
故选:D.

点评 本题考查了双曲线的定义与应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.已知p:1<2x<8;q:不等式x2-mx+4≥0恒成立,若¬p是¬q的必要条件,求实数m的取值范围m≤4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.当m∈[1,5)时,函数f(x)=(m-1)x2-(m-1)x+1的图象总在x轴上方.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知等比数列{an}的前n项和为Sn,S1,S3,S2成等差数列,且a1-a3=3,
(Ⅰ)求{an}的通项公式;
(Ⅱ)求Sn,并求满足Sn≤2的n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知圆C1:(x+1)2+y2=1,C2:(x-1)2+y2=25,动圆C与圆C1外切,与圆C2内切,则圆C的圆心的轨迹方程为(  )
A.$\frac{x^2}{3}+\frac{y^2}{2}=1$B.$\frac{x^2}{9}+\frac{y^2}{4}=1$C.$\frac{x^2}{9}+\frac{y^2}{5}=1$D.$\frac{x^2}{9}+\frac{y^2}{8}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知a>0,b>0,圆x2-2x+y2-2y=0的圆心在直线ax+by=4则ab的最大值是(  )
A.8B.4C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=kx2+x+k有两个不同的零点,且一个零点在区间(0,1)内,另一个在区间(1,3),求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设f(x)=xa,g(x)=1nx.
(1)若a=1,求证:当x>0时.f(x)≥g(x)+1;
(2)若a∈R,求关于x的方程f(x)=g(x)实根的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=x2+mx+2(其中m∈R)与g(x)=x+3有交点.
(1)若实数x为两函数图象交点的横坐标.请写出m关于x的函数关系式;
(2)在(I)的条件下.试利用单调性的定义求m(x)的单调区间:
(3)若对任意的实数x∈[1,+∞).函数y=f(x)图象恒在y=g(x)的图象上方,结合(1)(2)的结论,求出实数m的取值范围.

查看答案和解析>>

同步练习册答案