精英家教网 > 高中数学 > 题目详情

如图,在五面体ABCDEF中,FA⊥平面ABCD,AD∥BC∥FE,AB⊥AD,AF=AB=BC=FE=数学公式AD.
(Ⅰ)求异面直线BF与DE所成角的余弦值;
(Ⅱ)在线段CE上是否存在点M,使得直线AM与平面CDE所成角的正弦值为数学公式?若存在,试确定点M的位置;若不存在,请说明理由.

解:建立如图所示的直角坐标系,不妨设AB=1
则B(1,0,0),C(1,1,0),D(0,3,0),
F(0,0,1),E(0,1,1)
(Ⅰ)
∴异面直线BF与DE所成角的余弦值为
(Ⅱ)设平面CDE的一个法向量为



令y=1,得x=z=2,∴
设存在点M(p,q,r)满足条件,由
p=1-λ,q=1,r=λ即M(1-λ,1,λ)
=(1-λ,1,λ)
∵直线AM与平面CDE所成角的正弦值为
∴|cos<>|==,得λ
故当点M为CE中点时,直线AM与平面CDE所成角的正弦值为
分析:建立如图的空间坐标系,给出相应点的坐标,
(Ⅰ)求出异面直线BF与DE的方向向量,利用数量积公式的变形形式求两向量的夹角即可.
(Ⅱ)假设在线段CE上存在点M,使得直线AM与平面CDE所成角的正弦值为,求出直线的方向向量与平面的法向量,利用公式建立方程,若能求出符合条件的参数的值则说明存在,否则说明不存在.
点评:本题考查用空间向量求异面直线所成的角及直线与平面所成的角,及坐标运算等知识,考查数形结合、化归转化的数学思想和方法,以及空间想象能力、推理论证能力和运算求解能力,求线面角时由于直线的方向向量与平面的法向量的夹角的余弦值与线面角的正弦值相等,解题时易由于记忆不准把向量的夹角当成线面角导致出错,对规律性的内容要理解到位,掌握精准.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在六面体ABCDEFG中,平面ABC∥平面DEFG,AD⊥平面DEFG,AB⊥AC,ED⊥DG,EF∥DG.且AB=AD=DE=DG=2,AC=EF=1.
(Ⅰ)求证:BF∥平面ACGD;
(Ⅱ)求五面体ABCDEFG的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在五面体ABCDE中,平面BCD⊥平面ABC,DC=DB=
3
,AC=BC=2ED=2,AC⊥BC,且ED∥AC    
(1)求证:平面ABE⊥平面ABC
(2)在线段BC上有一点F,且BF=
1
2
,求二面角F-AE-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在五面体ABC-DEF中,四边形BCFE 是矩形,DE⊥平面BCFE.
求证:(1)BC⊥平面ABED;
(2)CF∥AD.

查看答案和解析>>

科目:高中数学 来源:2012年辽宁省鞍山一中高考数学五模试卷(理科)(解析版) 题型:解答题

如图,在五面体ABCDE中,平面BCD⊥平面ABC,DC=DB=,AC=BC=2ED=2,AC⊥BC,且ED∥AC    
(1)求证:平面ABE⊥平面ABC
(2)在线段BC上有一点F,且,求二面角F-AE-B的余弦值.

查看答案和解析>>

科目:高中数学 来源:2012年高考数学预测试卷2(文科)(解析版) 题型:解答题

如图,在六面体ABCDEFG中,平面ABC∥平面DEFG,AD⊥平面DEFG,AB⊥AC,ED⊥DG,EF∥DG.且AB=AD=DE=DG=2,AC=EF=1.
(Ⅰ)求证:BF∥平面ACGD;
(Ⅱ)求五面体ABCDEFG的体积.

查看答案和解析>>

同步练习册答案