【题目】已知函数,.
(1)讨论的单调性;
(2)若不等式对任意恒成立,求a的取值范围.
【答案】(1)当时,在单调递增,当时,的增区间为,减区间为,当时,的增区间为,减区间为;(2)
【解析】
(1)求出导函数,分类讨论分子二次函数的根的情况即可得解;
(2)结合(1)得出最大值,构造函数,结合单调性求解.
(1)
,
考虑,
当时,,在单调递增,
当时,记的两根,
结合可得:两根属于,
时,,
时,,
的增区间为,减区间为,
当时,开口向下,结合可得:
时,,
时,,
的增区间为,减区间为,
综上所述:当时,在单调递增,当时,的增区间为,减区间为,当时,的增区间为,减区间为;
(2)当时,当时,,
所以,
不满足对任意恒成立,
当时,结合(1),的增区间为,减区间为,
开口向下,结合可得:
是方程的根,所以,
所以,
由题
令,
,
易得时,,所以在单调递增,且
,即,
所以,
,
所以.
科目:高中数学 来源: 题型:
【题目】设集合的元素均为实数,若对任意,存在,,使得且,则称元素个数最少的和为的“孪生集”;称的“孪生集”的“孪生集”为的“2级孪生集”;称的“2级孪生集”的“孪生集”为的“3级孪生集”,依此类推……
(1)设,直接写出集合的“孪生集”;
(2)设元素个数为的集合的“孪生集”分别为和,若使集合中元素个数最少且所有元素之和为2,证明:中所有元素之和为;
(3)若,请直接写出的“级孪生集”的个数,及所有“级孪生集”的并集的元素个数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】把参加某次铅球投掷的同学的成绩(单位:米)进行整理,分成以下6个小组:[5.25,6.15),[6.15,7.05),[7.05,7.95),[7.95,8.85),[8.85,9.75),[9.75,10.65],并绘制出频率分布直方图,如图所示是这个频率分布直方图的一部分.已知从左到右前5个小组的频率分别为0.04,0.10,0.14,0.28,0.30,第6小组的频数是7.规定:投掷成绩不小于7.95米的为合格.
(1)求这次铅球投掷成绩合格的人数;
(2)你认为这次铅球投掷的同学的成绩的中位数在第几组?请说明理由;
(3)若参加这次铅球投掷的学生中,有5人的成绩为优秀,现在要从成绩优秀的学生中,随机选出2人参加相关部门组织的经验交流会,已知a、b 两位同学的成绩均为优秀,求a、b 两位同学中至少有1人被选到的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知椭圆的右顶点为,过点作直线与圆相切,与椭圆交于另一点,与右准线交于点.设直线的斜率为.
(1)用表示椭圆的离心率;
(2)若,求椭圆的离心率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线的焦点为F,点P为抛物线C上一点,,O为坐标原点,.
(1)求抛物线C的方程;
(2)设Q为抛物线C的准线上一点,过点F且垂直于OQ的直线交抛物线C于A,B两点记,的面积分别为,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在古装电视剧《知否》中,甲乙两人进行一种投壶比赛,比赛投中得分情况分“有初”“贯耳”“散射”“双耳”“依竿”五种,其中“有初”算“两筹”,“贯耳”算“四筹”,“散射”算“五筹”,“双耳”算“六筹”,“依竿”算“十筹”,三场比赛得筹数最多者获胜.假设甲投中“有初”的概率为,投中“贯耳”的概率为,投中“散射”的概率为,投中“双耳”的概率为,投中“依竿”的概率为,乙的投掷水平与甲相同,且甲乙投掷相互独立.比赛第一场,两人平局;第二场,甲投了个“贯耳”,乙投了个“双耳”,则三场比赛结束时,甲获胜的概率为( )
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2019年庆祝中华人民共和国成立70周年阅兵式彰显了中华民族从站起来、富起来迈向强起来的雄心壮志.阅兵式规模之大、类型之全均创历史之最,编组之新、要素之全彰显强军成就.装备方阵堪称“强军利刃”“强国之盾”,见证着人民军队迈向世界一流军队的坚定步伐.此次大阅兵不仅得到了全中国人的关注,还得到了无数外国人的关注.某单位有10位外国人,其中关注此次大阅兵的有8位,若从这10位外国人中任意选取3位做一次采访,则被采访者中至少有2位关注此次大阅兵的概率为( )
A.B.C.D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com