精英家教网 > 高中数学 > 题目详情

已知椭圆的中心在坐标原点O,焦点在x轴上,斜率为-1且过椭圆右焦点F的直线交椭圆于A、B两点,且直线x-3y+4=0与向量数学公式的平行.
(I)求椭圆的离心率;
(II)设M为椭圆上任意一点,点N(λ,μ),且满足数学公式,求N的轨迹方程.

解:(I)设椭圆方程为(a>b>0),F(c,0)
则直线AB的方程为y=-x+c,代入
化简得(a2+b2)x2-2a2cx+a2c2-a2b2=0.
令A(x1,y1),B(x2,y2),
则x1+x2=,x1x2=
+=(x1+x2,y1+y2),且直线x-3y+4=0的方向向量=(3,1),+共线,
∴3(y1+y2)-(x1+x2)=0,又y1=-x1+c,y2=-x2+c,
∴3(-x1-x2+2c)-(x1+x2)=0,
∴x1+x2=c.
=c,
所以a2=3b2
∴c=
故离心率e==
(II)由(I)知a2=3b2
所以椭圆可化为x2+3y2=3b2,F(c,0),
设M(x,y),
由已知

∵M(x,y)在椭圆上,即(λ-μ)2(x12+3y12)+2(λ22)(x1x2+3y1y2)+(λ+μ)2(x22+3y22)=3b2.①
由(I)知a2=c2,b2=c2
∴x1+x2=,x1x2==c2
∴x1x2+3y1y2=x1x2+3(-x1+c)(-x2+c)=4x1x2-3(x1+x2)c+3c2=c2-c2+3c2=0.
又x12+3y12=3b2,x22+3y22=3b2
代入①得λ22=
故N的轨迹方程为λ22=
分析:(Ⅰ)直线与椭圆方程联立用未达定理的A、B两点坐标的关系,据向量共线的条件得椭圆中a,b,c的关系,从而求得椭圆的离心率;
(Ⅱ)用向量运算将λ,μ用坐标表示,再用坐标的关系求出λ22的值,即得N的轨迹方程.
点评:考查向量共线为圆锥曲线提供已知条件;处理直线与圆锥曲线位置关系常用的方法是直线与圆锥曲线方程联立用韦达定理.是高考常见题型且是解答题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知椭圆的中心在坐标原点O,焦点在x轴上,短轴长为2,且两个焦点和短轴的两个端点恰为一个正方形的顶点.过右焦点F与x轴不垂直的直线l交椭圆于P,Q两点.
(1)求椭圆的方程;
(2)当直线l的斜率为1时,求△POQ的面积;
(3)在线段OF上是否存在点M(m,0),使得以MP,MQ为邻边的平行四边形是菱形?若存在,求出m的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的中心在坐标原点,且经过点M(1,
2
5
5
)
,N(-2,
5
5
)
,若圆C的圆心与椭圆的右焦点重合,圆的半径恰好等于椭圆的短半轴长,已知点A(x,y)为圆C上的一点.
(1)求椭圆的标准方程和圆的标准方程;
(2)求
AC
AO
+2|
AC
-
AO
|
(O为坐标原点)的取值范围;
(3)求x2+y2的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的中心在坐标原点,焦点在x轴上,椭圆上点P(3
2
,4)
到两焦点的距离之和是12,则椭圆的标准方程是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的中心在坐标原点,焦点在x轴上,焦距为6
3
,且椭圆上一点到两个焦点的距离之和为12,则椭圆的方程为
x2
36
+
y2
9
=1
x2
36
+
y2
9
=1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的中心在坐标原点O,焦点在x轴上,离心率为
2
2
,坐标原点O到过右焦点F且斜率为1的直线的距离为
2
2

(1)求椭圆的方程;
(2)设过右焦点F且与坐标轴不垂直的直线l交椭圆于P、Q两点,在线段OF上是否存在点M(m,0),使得以MP、MQ为邻边的平行四边形是菱形?若存在,求出m的取值范围;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案