精英家教网 > 高中数学 > 题目详情

【题目】首届世界低碳经济大会在南昌召开,本届大会以“节能减排,绿色生态”为主题,某单位在国家科研部门的支持下,进行技术攻关,采用了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为400吨,最多为600吨,月处理成本()与月处理量()之间的函数关系可近似地表示为,且每处理一吨二氧化碳得到可利用的化工产品价值为100元.

1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?

2)该单位每月能否获利?如果获利,求出最大利润;如果不获利,则需要国家至少补贴多少元才能使该单位不亏损?

【答案】1)该单位月处理量为400吨时,才能使每吨的平均处理成本最低,最低成本为200元/吨;(2)该单位每月不获利,需要国家每月至少补贴40000元才能不亏损.

【解析】

1)根据已知得平均处理成本为,得到关系式后利用基本不等式求得平均处理成本的最小值,并根据基本不等式等号成立条件求得每月处理量;(2)获利,根据二次函数图象可求得,可知不获利,同时求得国家至少补贴.

1)由题意可知,二氧化碳每吨的平均处理成本为:

当且仅当,即时取等号

月处理量为吨时,才能使每吨的平均处理成本最低,最低成本为元/吨

2)不获利

设该单位每月获利为

故该单位每月不获利,需要国家每月至少补贴元才能不亏损

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在矩形中,,点是线段上靠近点的一个三等分点,点是线段上的一个动点,且.如图,将沿折起至,使得平面平面.

(1)当时,求证:

(2)是否存在,使得与平面所成的角的正弦值为?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点在椭圆上,其中为椭圆的离心率.

1)求椭圆的方程;

2)直线经过的上顶点且与抛物线交于两点,为椭圆的焦点,直线分别交于点(异于点),(异于点),证明:直线的斜率为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为缓解堵车现象,解决堵车问题,银川市交警队调查了甲乙两个路口的车流量,在20196月随机选取了14天,统计每天上午730-900早高峰时段各自的车流量(单位:百辆)得到如图所示的茎叶图,根据茎叶图回答以下问题.

1)甲乙两个路口的车流量的中位数分别是多少?

2)试计算甲乙两个路口的车流量在之间的频率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某电动车售后服务调研小组从汽车市场上随机抽取20辆纯电动汽车调查其续驶里程(单次充电后能行驶的最大里程),被调查汽车的续驶里程全部介于50公里和300公里之间,将统计结果分成5组:,绘制成如图所示的频率分布直方图.

1)求续驶里程在的车辆数;

2)求续驶里程的平均数;

3)若从续驶里程在的车辆中随机抽取2辆车,求其中恰有一辆车的续驶里程在内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中国古代数学著作《算法统综》中有这样的一个问题:三百七十八里关,初步健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还”.其大意为:有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地,请问此人第2天走的路程为

A. 24 B. 48 C. 72 D. 96

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,梯形中,分别是的中点,现将沿翻折到位置,使

1)证明:

2)求二面角的平面角的正切值;

3)求与平面所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙、丙三人参加微信群抢红包游戏,规则如下:每轮游戏发100个红包,每个红包金额为x元,.已知在每轮游戏中所产生的100个红包金额的频率分布直方图如图所示.

(1)求a的值,并根据频率分布直方图,估计红包金额的众数;

(2)以频率分布直方图中的频率作为概率,若甲、乙、丙三人从中各抢到一个红包,其中金额在[1,2)的红包个数为X,求X的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某射击运动员进行射击训练,前三次射击在靶上的着弹点刚好是边长为的等边三角形的三个顶点.

(Ⅰ)第四次射击时,该运动员瞄准区域射击(不会打到外),则此次射击的着弹点距的距离都超过的概率为多少?(弹孔大小忽略不计)

(Ⅱ) 该运动员前三次射击的成绩(环数)都在区间内,调整一下后,又连打三枪,其成绩(环数)都在区间内.现从这次射击成绩中随机抽取两次射击的成绩(记为)进行技术分析.求事件“”的概率.

查看答案和解析>>

同步练习册答案