精英家教网 > 高中数学 > 题目详情
如图,点AB分别是椭圆长轴的左、右端点,点F是椭圆的右焦点,点P在椭圆上,且位于轴上方,
(1)求点P的坐标;
(2)设M是椭圆长轴AB上的一点,M到直线AP的距离等于,求椭圆上的点到点M的距离的最小值.
(1)P点的坐标是  
(2)由于
解:(1)由已知可得点A(-6,0),F(4,0)
设点P的坐标是,由已知得
(舍)
, ∴P点的坐标是   
(2)直线AP的方程是
设点M的坐标是(m,0),则M到直线AP的距离是
于是
椭圆上的点到点M的距离d

由于
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(12分)已知圆的方程为,椭圆的方程,且离心率为,如果相交于两点,且线段恰为圆的直径.
(Ⅰ)求直线的方程和椭圆的方程;
(Ⅱ)如果椭圆的左、右焦点分别是,椭圆上是否存在点,使得,如果存在,请求点的坐标,如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)已知椭圆的左、右焦点分别为,点轴上方椭圆上的一点,且, ,
(Ⅰ)求椭圆的方程和点的坐标;
(Ⅱ)判断以为直径的圆与以椭圆的长轴为直径的圆的位置关系;
(Ⅲ)若点是椭圆上的任意一点,是椭圆的一个焦点,探究以为直径的圆与以椭圆的长轴为直径的圆的位置关系.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)如图所示,为半圆,AB为半圆直径,O为半圆圆心,且OD⊥AB,Q为线段OD的中点,已知|AB|=4,曲线C过Q点,动点P在曲线C上运动且保持|PA|+|PB|的值不变.

(Ⅰ)建立适当的平面直角坐标系,求曲线C的方程;
(Ⅱ)过D点的直线l与曲线C相交于不同的两点M、N,问是否存在这样的直线使 与平行,若平行,求出直线的方程, 若不平行,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
M在椭圆上,以M为圆心的圆与x轴相切于椭圆的右焦点F
(I)若圆My轴相交于AB两点,且△ABM是边长为2的正三角形,求椭圆的方程;
(II)已知点F(1,0),设过点F的直线l交椭圆于CD两点,若直线l绕点F任意转动时,恒有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆,试确定m的取值范围,使得椭圆上总有不同的两点关于直线y=4x+m对称。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

方程的曲线是焦点在轴上的椭圆,则的取值范围是    

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)已知椭圆的长轴,短轴端点分别是A,B,从椭圆上一点M向x轴作垂线,恰好通过椭圆的左焦点,向量是共线向量
(1)求椭圆的离心率
(2)设Q是椭圆上任意一点,分别是左右焦点,求的取值范围

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

左焦点的坐标是_________________

查看答案和解析>>

同步练习册答案