精英家教网 > 高中数学 > 题目详情
精英家教网如图,两个全等的正方形ABCD和ABEF所在平面相交于AB,M∈AC,N∈FB且AM=FN,求证:MN∥平面BCE.
分析:过M作MP⊥BC,NQ⊥BE,P、Q为垂足(如图),连接PQ,要证MN∥平面BCE,只需证明直线MN平行平面BCE内的直线PQ即可.也可以通过平面与平面的平行,即平面MNG∥平面BCE,来证明MN∥平面BCE,
解答:精英家教网证法一:过M作MP⊥BC,NQ⊥BE,P、Q为垂足(如图),连接PQ.
∵MP∥AB,NQ∥AB,∴MP∥NQ.
又NQ=
2
2
BN=
2
2
CM=MP,∴MPQN是平行四边形.
∴MN∥PQ,PQ?平面BCE.
而MN?平面BCE,
∴MN∥平面BCE.
证法二:过M作MG∥BC,交AB于点G(如图),连接NG.
∵MG∥BC,BC?平面BCE,
MG?平面BCE,
∴MG∥平面BCE.
BG
GA
=
CM
MA
=
BN
NF

∴GN∥AF∥BE,同样可证明GN∥平面BCE.
又面MG∩NG=G,
∴平面MNG∥平面BCE.又MN?平面MNG.∴MN∥平面BCE.
点评:本题考查直线与平面平行的判定,考查逻辑思维能力,转化思想,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源:数学教研室 题型:047

如图,两个全等的正方形ABCD和ABEF所在平面相交于AB,,且AM=FN.求证:MN∥平面BCE.

查看答案和解析>>

科目:高中数学 来源: 题型:047

如图,两个全等的正方形ABCDABEF所在平面相交于AB,且AM=FN.求证:MN∥平面BCE

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,两个全等的正方形ABCD和ABEF所在平面相交于AB,M∈AC,N∈FB且AM=FN,求证:MN∥平面BCE.

查看答案和解析>>

科目:高中数学 来源:2006年高考第一轮复习数学:9.2 直线与平面平行(解析版) 题型:解答题

如图,两个全等的正方形ABCD和ABEF所在平面相交于AB,M∈AC,N∈FB且AM=FN,求证:MN∥平面BCE.

查看答案和解析>>

同步练习册答案