精英家教网 > 高中数学 > 题目详情

【题目】已知a<﹣1,函数f(x)=|x3﹣1|+x3+ax(x∈R).
(Ⅰ)求函数f(x)的最小值;
(Ⅱ)已知存在实数m,n(m<n≤1),对任意t0∈(m,n),总存在两个不同的t1 , t2∈(1,+∞),
使得f(t0)﹣2=f(t1)=f(t2),求证:

【答案】解:(Ⅰ)

则f2′(x)=6x2+a,

因为 a<﹣1则由f2′(x)=0可得x=±

(i) ,f1(x)在(﹣∞,1)上递减,

f2(x)在[1,+∞)上递增,

所以[f(x)]min=f(1)=a+1;

(ii) ,f1(x)在(﹣∞,1)上递减,

所以

综上,

(Ⅱ)证明:不妨设t1<t2,则由(1)知,若﹣6≤a<﹣1,则f2(x)在(1,+∞)上递增,

不满足题意,所以a<﹣6.

所以 ,且

(i)a+1﹣2> ,即

,解得 ,即

所以 ,所以

所以

(ii)a+1﹣2≤ ,即

,解得

所以 ,所以m≥1+ ,n≤

所以n﹣m≤ ﹣1﹣

=u∈(1, ],则 ﹣1﹣ = u﹣1+

令φ(u)= u﹣1+ ,则

所以φ(u)= u﹣1+ 在u∈(1, ]递增,

所以φ(u)≤φ( )= ,所以n﹣m≤φ(u)≤


【解析】(Ⅰ)运用分段函数的形式写出f(x),讨论 ,判断单调性,即可得到所求最小值;(Ⅱ)不妨设t1<t2,则由(1)知,若﹣6≤a<﹣1,则f2(x)在(1,+∞)上递增,不满足题意,所以a<﹣6.讨论(i)a+1﹣2> ,(ii)a+1﹣2≤ ,运用不等式的性质,求出n﹣m的不等式,即可得到证明.
【考点精析】利用函数的最值及其几何意义对题目进行判断即可得到答案,需要熟知利用二次函数的性质(配方法)求函数的最大(小)值;利用图象求函数的最大(小)值;利用函数单调性的判断函数的最大(小)值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P ABCD中,ABCDABADCD2AB,平面PAD⊥底面ABCDPAADEF分别为CDPC的中点.

求证:(1) BE∥平面PAD

(2) 平面BEF⊥平面PCD.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 f(x)=2sin2ωx+2sinωxcosωx﹣1(ω>0)的周期为π.
(Ⅰ)求ω的值;
(Ⅱ)求函数f(x)在[ ]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1)求与点P(3,5)关于直线l:x-3y+2=0对称的点P′的坐标.(2)已知直线l:y=-2x+6和点A(1,-1),过点A作直线l1与直线l相交于B点,且|AB|=5,求直线l1的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】解答题
(Ⅰ)已知 ,其中ai∈R,i=1,2,…10.
(i)求a0+a1+a2+…+a10
(ii)求a7
(Ⅱ)2017年5月,北京召开“一带一路”国际合作高峰论坛.组委会将甲、乙、丙、丁、戊五名志愿者分配到翻译、导游、礼仪、司机四个不同的岗位,每个岗位至少有一人参加,且五人均能胜任这四个岗位.
(i)若每人不准兼职,则不同的分配方案有几种?
(ii)若甲乙被抽调去别的地方,剩下三人要求每人必兼两职,则不同的分配方案有几种?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆M过点A(1,3),B(4,2),且圆心在直线y=x﹣3上.
(Ⅰ)求圆M的方程;
(Ⅱ)若过点(﹣4,1)的直线l与圆M相切,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中正确的个数是( )

①若直线l上有无数个点不在平面α内,则l∥α

②若直线l与平面α平行,则l与平面α内的任意一条直线都平行

③如果两条平行直线中的一条与一个平面平行,那么另一条也与这个平面平行

④若直线l与平面α平行,则l与平面α内的任意一条直线都没有公共点.

A.0 B.1

C.2 D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】环境监测中心监测我市空气质量,每天都要记录空气质量指数(指数采取10分制,保留一位小数).现随机抽取20天的指数(见下表),将指数不低于8.5视为当天空气质量优良.

天数

1

2

3

4

5

6

7

8

9

10

空气质量指数

7.1

8.3

7.3

9.5

8.6

7.7

8.7

8.8

8.7

9.1

天数

11

12

13

14

15

16

17

18

19

20

空气质量指数

7.4

8.5

9.7

8.4

9.6

7.6

9.4

8.9

8.3

9.3

(Ⅰ)求从这20天随机抽取3天,至少有2天空气质量为优良的概率;
(Ⅱ)以这20天的数据估计我市总体空气质量(天数很多).若从我市总体空气质量指数中随机抽取3天的指数,用X表示抽到空气质量为优良的天数,求X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙、丙、丁四个物体同时从某一点出发向同一个方向运动,其路程关于时间的函数关系式分别为,有以下结论:

①当时,甲走在最前面;

②当时,乙走在最前面;

③当时,丁走在最前面,当时,丁走在最后面;

④丙不可能走在最前面,也不可能走在最后面;

⑤如果它们一直运动下去,最终走在最前面的是甲.

其中,正确结论的序号为 (把正确结论的序号都填上,多填或少填均不得分).

查看答案和解析>>

同步练习册答案