精英家教网 > 高中数学 > 题目详情
如图,直角三角形ABC中,∠B=90°,AB=1,BC=
3
.点M,N分别在边AB和AC 上(M点和B点不重合),将△AMN沿MN翻折,△AMN变为△A′MN,使顶点A′落在边BC上(A′点和B点不重合).设∠AMN=θ.
(1)用θ表示∠BA′M和线段AM的长度,并写出θ的取值范围;
(2)求线段AN长度的最小值.
分析:(1)由折叠可知△AMN≌△A′MN,可得对应角相等,∠AMN=θ,可得出∠A′MA=2θ,在直角三角形A′MB,根据直角三角形的两锐角互余,即可表示∠BA′M,设MA=MA′=x,由AB=1,利用AB-AM表示出MB为1-x,Rt△MBA′中,根据锐角三角函数定义用x表示出sin(2θ-90°),求出x,利用诱导公式及二倍角的正弦函数公式化简,即可表示出MA,同时由点M在线段AB上,M点和B点不重合,A′点和B点不重合,可得出θ的取值范围;
(2)在直角三角形ABC中,由AB及BC的长,利用勾股定理求出AC的长,可得出AC=2AB,即∠ACB为30°,得出∠BAC为60°,在三角形AMN中,∠AMN=θ,利用三角形内角和定理表示出∠ANM,再由AM的长,利用正弦定理列出关系式,化简可得出AN=
1
2sinθsin(120°-θ)
,设t=2sinθsin(120°-θ),利用两角和与差的正弦函数公式及特殊角的三角函数值化简,去括号后再利用二倍角的正弦、余弦函数公式变形,再利用两角和与差的正弦函数公式化为一个角的正弦函数,由θ的范围求出这个角的范围,根据正弦函数的图象与性质得到此时正弦函数的值域,可得出t的最大值,进而确定出AN的最小值.
解答:解:(1)易知△AMN≌△A′MN,∴∠A′MA=2θ,
则∠A′MB=180°-2θ,∠BA′M=90°-(180°-2θ)=2θ-90°,(2分)
设MA=MA′=x,则MB=1-x,
在Rt△MBA′中,sin(2θ-90°)=-cos2θ=
1-x
x

∴MA=x=
1
1-cos2θ
=
1
2sin2θ
,(5分)
∵点M在线段AB上,M点和B点不重合,A′点和B点不重合,
∴45°<θ<90°;(6分)
(2)∵∠B=90°,AB=1,BC=
3

∴根据勾股定理得:AC=2,
∴∠BAC=60°,
在△AMN中,由∠AMN=θ,可得∠ANM=180°-60°-θ=120°-θ,
又MA=
1
2sin2θ

∴根据正弦定理得:
AN
sinθ
=
MA
sin(120°-θ)

可得:AN=
sinθ×
1
2sin2θ
sin(120°-θ)
=
1
2sinθsin(120°-θ)
,(8分)
令t=2sinθsin(120°-θ)=2sinθ(
1
2
sinθ+
3
2
cosθ)
=sin2θ+
3
sinθcosθ=
1
2
+
3
2
sin2θ-
1
2
cos2θ=
1
2
+sin(2θ-30°),(11分)
∵45°<θ<90°,∴60°<2θ-30°<150°,
当且仅当2θ-30°=90°,θ=60°时,t有最大值
3
2

则θ=60°时,AN有最小值
2
3
.(13分)
点评:此题考查了正弦定理,两角和与差的正弦函数公式,二倍角的正弦、余弦函数公式,正弦函数的定义域与值域,以及特殊角的三角函数值,熟练掌握定理及公式是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,直角三角形ABC中,∠B=90°,AB=1,BC=
3
.点M,N分别在边AB和AC上(M点和B点不重合),将△AMN沿MN翻折,△AMN变为△A'MN,使顶点A'落在边BC上(A'点和B点不重合).设∠AMN=θ.
(1)用θ表示线段AM的长度,并写出θ的取值范围;
(2)在△AMN中,若
AN
sin∠AMN
=
MA
sin∠ANM
,求线段A'N长度的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本题为选做题,请在下列三题中任选一题作答)
A(《几何证明选讲》选做题).如图:直角三角形ABC中,∠B=90°,AB=4,以BC为直径的圆交边AC于点D,AD=2,则∠C的大小为
30°
30°

B(《坐标系与参数方程选讲》选做题).已知直线的极坐标方程为ρsin(θ+
π
4
)=
2
2
,则点A(2,
4
)到这条直线的距离为
2
2
2
2

C(不等式选讲)不等式|x-1|+|x|<3的解集是
(-1,2)
(-1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•咸阳三模)(考生注意:请在下列三道试题中任选一题作答,如果多做,则按所做的第一题评阅记分)
A.(不等式选做题)若不等式|2a-1|≤ |x+
1
x
|
对一切非零实数x恒成立,则实数a的取值范围为
[-
1
2
3
2
]
[-
1
2
3
2
]

B.(几何证明选做题)如图,直角三角形ABC中,∠B=90°,AB=4,以BC为直径的圆交AC边于点D,AD=2,则∠C的大小为
30°
30°

C.(极坐标与参数方程选做题)若直线l的极坐标方程为ρcos(θ-
π
4
)=3
2
,圆C:
x=cosθ
y=sinθ
(θ为参数)上的点到直线l的距离为d,则d的最大值为
3
2
+1
3
2
+1

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图:直角三角形ABC中,AC⊥BC,AB=2,D是AB的中点,M是CD上的动点.
(1)若M是CD的中点,求
MA
MB
的值;
(2)求(
MA
+
MB
)•
MC
的最小值.

查看答案和解析>>

同步练习册答案