精英家教网 > 高中数学 > 题目详情

【题目】从某企业生产的某种产品中抽取500测量这些产品的一项质量指标值由测量结果得如下频率分布直方图:

(1)求这500件产品质量指标值的样本平均数和样本方差s2(同一组中的数据用该组区间的中点值作代表)

(2)由直方图可以认为这种产品的质量指标值Z服从正态分布N(μσ2)其中μ近似为样本平均数σ2近似为样本方差s2.

()利用该正态分布P(187.8<Z<212.2)

()某用户从该企业购买了100件这种产品X表示这100件产品中质量指标值位于区间(187.8212.2)的产品件数.利用()的结果,求E(X).

附: 12.2.ZN(μσ2)P(μσ<Z<μσ)0.682 6P(μ2σ<Z<μ2σ)0.954 4.

【答案】11502() 0.6826. () 68.26.

【解析】试题分析:

(1)利用题中所给的数据可得平均数 ,方差

(2)利用正态分布的对称性可得:P(187.8<Z<212.2)0.6826.

(3)利用(i)的结论结合题意可得 .

试题解析:

(1)抽取产品的质量指标值的样本平均数x-和样本方差s2分别为

170×0.02180×0.09190×0.22200×0.33210×0.24220×0.08230×0.02200

s2(30)2×0.02(20)2×0.09(10)2×0.220×0.33102×0.24202×0.08302×0.02150.

(2)()(1)ZN(200150)从而

P(187.8<Z<212.2)P(20012.2<Z<20012.2)0.6826.

(ⅱ)由(ⅰ)知,一件产品的质量指标值位于区间(187.8,212.2)的概率为0.682 6,依题意知XB(100,0.6826),所以E(X)=100×0.682 6=68.26.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知幂函数f(x)=xα,当x>1时,恒有f(x)<x,则α的取值范围是(  )

A. (0,1) B. (-∞,1)

C. (0,+∞) D. (-∞,0)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于定义域为的函数,若满足①;②当,且时,都有;③当,且时, ,则称为“偏对函数”.现给出四个函数: . 则其中是“偏对称函数”的函数个数为( )

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中,都是边长为2的等边三角形,设在底面的射影为.

(1)求证:中点;

(2)证明:

(3)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某厂商调查甲、乙两种不同型号电视机在10个卖场的销售量(单位:台),并根据这10个卖场的销售情况,得到如图所示的茎叶图.

为了鼓励卖场,在同型号电视机的销售中,该厂商将销售量高于数据平均数的卖场命名为该型号电视机的“星级卖场”.

(1)当时,记甲型号电视机的“星级卖场”数量为,乙型号电视机的“星级卖场”数量为,比较的大小关系;

(2)在这10个卖场中,随机选取2个卖场,记为其中甲型号电视机的“星级卖场”的个数,求的分布列和数学期望;

(3)若,记乙型号电视机销售量的方差为,根据茎叶图推断为何值时,达到最小值.(只需写出结论)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三棱锥的直观图和三视图如下:

(1)求证: 底面

(2)求三棱锥的体积;

(3)求三棱锥的侧面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【2017届湖北省武汉市武昌区高三1月调研考试文数】已知函数.

(Ⅰ)讨论的单调性;

(Ⅱ)设,若对,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某县城出租车的收费标准是:起步价是元(乘车不超过千米);行驶千米后,每千米车费1.2元;行驶千米后,每千米车费1.8元.

(1)写出车费与路程的关系式;

(2)一顾客计划行程千米,为了省钱,他设计了三种乘车方案:

①不换车:乘一辆出租车行千米

②分两段乘车:先乘一辆车行千米,换乘另一辆车再行千米;

③分三段乘车:每乘千米换一次车.

问哪一种方案最省钱.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】线段AB的两端在直二面角αlβ的两个面内,并与这两个面都成30°角,则异面直线ABl所成的角是(  )

A. 30° B. 45°

C. 60° D. 75°

查看答案和解析>>

同步练习册答案