精英家教网 > 高中数学 > 题目详情
2.已知集合P={x|x2-2x≥0},Q={x|1<x≤2},则P∩(∁RQ)=(  )
A.(-∞,0]∪[2,+∞)B.(-∞,0]∪(2,+∞)C.(-∞,0)∪[2,+∞)D.(-∞,0)∪(2,+∞)

分析 求出P中不等式的解集确定出P,求出Q补集与P的交集即可.

解答 解:由P中不等式变形得:x(x-2)≥0,
解得:x≤0或x≥2,即P=(-∞,0]∪[2,+∞),
∵Q=(1,2],
∴∁RQ=(-∞,1]∪(2,+∞),
则P∩(∁RQ)=(-∞,0]∪(2,+∞),
故选:B.

点评 此题考查了交、并、补集的混合运算,熟练掌握各自的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.从装有红球、白球和黑球各2个的口袋内一次取出2个球,则与事件“两球都为白球”互斥而非对立的事件是以下事件“①两球都不是白球;②两球恰有一白球;③两球至少有一个白球”中的哪几个?(  )
A.①②B.①③C.②③D.①②③

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设a<$\frac{1}{2}$,判断并用单调性定义证明函数$f(x)=\frac{ax+1}{x+2}$,在(-2,+∞)上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设函数f(x)=lnx+$\frac{a}{ex}$,求函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.若函数f(x)=$\sqrt{x}$-1n(x+a)(a>0)在(1,2)上单减,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.定义在(-∞,0)∪(0,+∞)上的函数f(x),如果对于任意给定的等比数列{an},{f(an)},仍是等比数列,则称f(x)为“等比函数”.现有定义在(-∞),0)∪(0,+∞)上的如下函数:
①f(x)=3x
②f(x)=$\frac{2}{x}$,
③f(x)=x3
④f(x)=log2|x|,
则其中是“等比函数”的f(x)的序号为(  )
A.①②③④B.①④C.①②④D.②③

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若函数f(x)=|$\frac{{x}^{2}+4x+1}{x}$|-a的图象与x轴恰有四个不同的交点,则实数a的取值范围为(0,2)∪(6,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.求直线x-y=0和椭圆$\frac{{x}^{2}}{20}+\frac{{y}^{2}}{5}=1$的两个交点及焦点间距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设函数f(x)=3x,且f(a+2)=18,函数g(x)=3ax-4x(x∈R).
(1)求g(x)的解析式;
(2)若方程g(x)-b=0在[-2,2]上有两个不同的解,求实数b的取值范围.

查看答案和解析>>

同步练习册答案