精英家教网 > 高中数学 > 题目详情
15.已知点A、B的坐标分别是(0,-1),(0,1),直线AM,BM相交于点M,且直线AM的斜率与BM的斜率的积是$-\frac{1}{4}$.
(1)设M的轨迹为曲线C,求曲线C的方程;
(2)若直线y=k(x-1)与该曲线有两个交点P、Q,且以PQ为直径的圆过坐标原点O,求k的值.

分析 (1)设M(x,y),利用kAM•kBM=$-\frac{1}{4}$计算即得结论;
(2)通过联立直线与椭圆方程,利用韦达定理、|PQ|2=|0P|2+|OQ|2,计算即得结论.

解答 解:(1)设M(x,y),
∵A(0,-1),B(0,1),
∴kAM=$\frac{y+1}{x-0}$,kBM=$\frac{y-1}{x-0}$,
∵直线AM的斜率与BM的斜率的积是$-\frac{1}{4}$,
∴$\frac{y+1}{x-0}$•$\frac{y-1}{x-0}$=-$\frac{1}{4}$,
整理得:$\frac{{x}^{2}}{4}+{y}^{2}=1$,
∴曲线C的方程为:$\frac{x^2}{4}+{y^2}=1(x≠0)$;
(2)设P(x1,y1),Q(x2,y2),
联立$\left\{\begin{array}{l}\frac{x^2}{4}+{y^2}=1\\ y=k(x-1)\end{array}\right.$,消去y整理得:
(1+4k2)x2-8k2x+4k2-4=0,
∴${x_1}+{x_2}=\frac{{8{k^2}}}{{1+4{k^2}}}$,${x_1}•{x_2}=\frac{{4{k^2}-4}}{{1+4{k^2}}}$,
∵以PQ为直径的圆过坐标原点O,
∴|PQ|2=|0P|2+|OQ|2
∴$({x}_{1}-{x}_{2})^{2}+({y}_{1}-{y}_{2})^{2}$=${{x}_{1}}^{2}+{{y}_{1}}^{2}$+${{x}_{2}}^{2}+{{y}_{2}}^{2}$,
∴x1•x2+y1•y2=x1•x2+k2•(x1-1)(x2-1)
=(1+k2)x1•x2-k2•(x1+x2)+k2
=$\frac{{{k^2}-4}}{{1+4{k^2}}}=0$
∴k=±2.

点评 本题是一道直线与圆锥曲线的综合题,考查运算求解能力,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.曲线y=f(x)在x=2处的切线方程为y=-x+6,则f(2)+f′(2)=3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),ab=2$\sqrt{3}$,离心率为$\frac{1}{2}$.
(Ⅰ)求椭圆的方程;
(Ⅱ)设A为椭圆的左顶点,过椭圆的右焦点F的直线交椭圆于M,N两点,直线AM,AN与直线x=4交于P,Q两点.证明:以PQ为直径的圆恒过定点,并求出定点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=$\frac{\sqrt{2}}{2}$sin2x-cos2x,x∈R.
(1)当x∈[0,π]时,求函数f(x)的单调增区间;
(2)设△ABC的内角A、B、C的对边分别为a、b、c,且c=$\sqrt{3}$,f(C)=0,若向量$\overrightarrow{m}$=(1,sinA)与向量$\overrightarrow{n}$=(2,sinB)共线,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.在△ABC中,边a,b的长是方程x2-5x+2=0的两个根,C=60°,则边c=$\sqrt{19}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下列推理正确的是(  )
A.把a(b+c)与lg(x+y)类比,则lg(x+y)=lgx+lgy
B.把a(b+c)与sin(x+y)类比,则sin(x+y)=sinx+siny
C.把a(b+c)与ax+y类比,则ax+y=ax+ay
D.把a(b+c)与$\overrightarrow{a}•(\overrightarrow{b}+\overrightarrow{c})类比,则\overrightarrow{a}•(\overrightarrow{b}+\overrightarrow{c})$=$\overrightarrow{a}•\overrightarrow{b}+\overrightarrow{a}•\overrightarrow{c}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.若等差数列{an}的前三项分别为a-1,a+1,2a+3,求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在等比数列{an}中,a1=2,q=2,则其通项公式为(  )
A.an=2n-1B.an=2nC.an=2n+1D.an=2n+1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.f′(x)是定义在R上的函数f(x)的导函数,x0∈R,设命题P:f′(x0)=0;命题Q:x=x0是函数f(x)的极值点,则P是Q成立的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案