精英家教网 > 高中数学 > 题目详情

【题目】已知函数 ,g(x)=x2﹣2bx+4,若对任意x1∈(0,2),存在x2∈[1,2],使f(x1)≥g(x2),则实数b的取值范围是

【答案】[ ,+∞)
【解析】解:∵函数 , ∴f′(x)= = =
若f′(x)>0,1<x<3,f(x)为增函数;
若f′(x)<0,x>3或0<x<1,f(x)为减函数;
f(x)在x∈(0,2)上有极值,
f(x)在x=1处取极小值也是最小值f(x)min=f(1)=﹣ =﹣
∵g(x)=x2﹣2bx+4=(x﹣b)2+4﹣b2 , 对称轴x=b,x∈[1,2],
当b<1时,g(x)在x=1处取最小值g(x)min=g(1)=1﹣2b=4=5﹣2b;
当1<b<2时,g(x)在x=b处取最小值g(x)min=g(b)=4﹣b2
当b>2时,g(x)在[1,2]上是减函数,g(x)min=g(2)=4﹣4b+4=8﹣4b;
∵对任意x1∈(0,2),存在x2∈[1,2],使f(x1)≥g(x2),
∴只要f(x)的最小值大于等于g(x)的最小值即可,
当b<1时,﹣ ≥5﹣2b,解得b≥ ,故b无解;当b>2时,﹣ ≥8﹣4b,解得b≥
综上:b≥
所以答案是:[ ,+∞).
【考点精析】解答此题的关键在于理解全称命题的相关知识,掌握全称命题,它的否定;全称命题的否定是特称命题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,直角坐标系x′Oy所在的平面为β,直角坐标系xOy所在的平面为α,且二面角α﹣y轴﹣β的大小等于30°.已知β内的曲线C′的方程是3(x﹣2 2+4y2﹣36=0,则曲线C′在α内的射影在坐标系xOy下的曲线方程是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱柱ABCD﹣A1B1C1D1中,AA1⊥底面ABCD,∠ADC=90°,AB∥CD,AD=CD=DD1=2AB=2. (Ⅰ) 求证:AD1⊥B1C;
(Ⅱ) 求二面角A1﹣BD﹣C1的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a∈R,函数f(x)═log2 +a).
(1)若f(1)<2,求实数a的取值范围;
(2)设函数g(x)=f(x)﹣log2[(a﹣4)x+2a﹣5],讨论函数g(x)的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数y=f(x)对任意的x∈(﹣ )满足f′(x)cosx+f(x)sinx>0(其中f′(x)是函数f(x)的导函数),则下列不等式成立的是(
A. f(﹣ )<f(﹣
B. f( )<f(
C.f(0)>2f(
D.f(0)> f(

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列{an}满足a1+a2+…+an+2n= (an+1+1),n∈N* , 且a1=1,求证:
(1)数列{an+2n}是等比数列;
(2)求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】等比数列{an}共有奇数项,所有奇数项和S=255,所有偶数项和S=﹣126,末项是192,则首项a1=(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)的定义域为R,如果存在函数g(x),使得f(x)≥g(x)对于一切实数x都成立,那么称g(x)为函数f(x)的一个承托函数.已知函数f(x)=ax2+bx+c的图象经过点(﹣1,0).
(1)若a=1,b=2.写出函数f(x)的一个承托函数(结论不要求证明);
(2)判断是否存在常数a,b,c,使得y=x为函数f(x)的一个承托函数,且f(x)为函数 的一个承托函数?若存在,求出a,b,c的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正三棱柱(底面是正三角形的直棱柱)ABC﹣A1B1C1中,已知AB=2,CC1= ,则异面直线AB1和BC1所成角的正弦值为(
A.
B.
C.
D.1

查看答案和解析>>

同步练习册答案