精英家教网 > 高中数学 > 题目详情
11、等比数列{an}的前n项和是Sn,若S30=13S10,S10+S30=140,则S20的值是
40
分析:首先根据题意求出S10=10,S30=130,再根据Sn,S2n-Sn,S3n-S2n也是等比数列,得到S20=40,或者S20=-30,然后利用等比数列的求和公式得到答案.
解答:解:因为S30=13S10,S10+S30=140,
所以S10=10,S30=130.
∵数列{an}为等比数列,
∴Sn,S2n-Sn,S3n-S2n也是等比数列,即S10,S20-S10,S30-S20也是等比数列,
所以S20=40,或者S20=-30,
因为S20=S10(1+q10),所以S20=40.
故答案为40.
点评:本题主要考查了等比数列的性质和数列的求和.解题的关键是利用了等比数列中Sn,S2n-Sn,S3n-S2n也是等比数列的性质.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)叙述并证明等比数列的前n项和公式;
(2)已知Sn是等比数列{an} 的前n项和,S3,S9,S6成等差数列,求证:a1+k,a7+k,a4+k(k∈N)成等差数列;
(3)已知Sn是正项等比数列{an} 的前n项和,公比0<q≤1,求证:2Sn+1≥Sn+Sn+2

查看答案和解析>>

科目:高中数学 来源: 题型:

Sn是等比数列{an}的前n项和,对于任意正整数n,恒有Sn>0,则等比数列{an}的公比q的取值范围为
(-1,0)∪(0,+∞)
(-1,0)∪(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•蓝山县模拟)统计某校高三年级100名学生的数学月考成绩,得到样本频率分布直方图如下图所示,已知前4组的频数分别是等比数列{an}的前4项,后6组的频数分别是等差数列{bn}的前6项,
(1)求数列{an}、{bn}的通项公式;
(2)设m、n为该校学生的数学月考成绩,且已知m、n∈[70,80)∪[140,150],求事件|m-n|>10”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

设等比数列{an}的前n项和为Sn,又Wn=
1
a1
+
1
a2
+
1
a3
+…+
1
an
,如果a8=10,那么S15:W15=
100
100

查看答案和解析>>

科目:高中数学 来源: 题型:

设Sn是正项等比数列{an}的前n项和,S2=4,S4=20则数列的首项a1=(  )

查看答案和解析>>

同步练习册答案