精英家教网 > 高中数学 > 题目详情
10.已知i是虚数单位,z=1+i,则复数$\frac{1}{z}$在复平面内对应的点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

分析 利用复数的除法运算求出复数对应点的坐标,判断所在象限即可.

解答 解:z=1+i,则复数$\frac{1}{z}$=$\frac{1}{1+i}$=$\frac{1-i}{(1+i)(1-i)}$=$\frac{1}{2}-\frac{1}{2}i$,复数的对应点的坐标($\frac{1}{2},-\frac{1}{2}$),在第四象限.
故选:D.

点评 本题考查复数的除法的运算法则的应用,复数的几何意义,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.已知$\overrightarrow b$=(3,-1),$\overrightarrow c$=(4,3),$\overrightarrow a$满足$\overrightarrow a•(\overrightarrow b•\overrightarrow c)$=(-9,18),则$\overrightarrow a$=(-1,2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=ax3+bx2-3x在x=±1处取得极值.
(1)讨论函数f(x)的极值;
(2)过点A(0,16)作曲线y=f(x)的切线,求此切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知点A(10,1),B(2,y),向量$\overrightarrow a=(1,2)$,若$\overrightarrow{AB}$$⊥\overrightarrow a$,则实数y的值为(  )
A.5B.6C.7D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设定义在R上的函数f(x)对于任意x,y都有f(x+y)=f(x)+f(y)成立,且f(1)=-2,当x>0时,f(x)<0.
(1)判断f(x)在R上的单调性,并加以证明;
(2)当-2015≤x≤2015时,不等式f(x)≤k恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.某中学研究性学习小组,为了考察高中学生的作文水平与爱看课外书的关系,在本校高三年级随机调查了 50名学生.调査结果表明:在爱看课外书的25人中有18人作文水平好,另7人作文水平一般;在不爱看课外书的25人中有6人作文水平好,另19人作文水平一般.
(Ⅰ)试根据以上数据完成以下2×2列联表,并运用独立性检验思想,指出有多大把握认为中学生的作文水平与爱看课外书有关系?
高中学生的作文水平与爱看课外书的2×2列联表
爱看课外书不爱看课外书总计
作文水平好 
作文水平一般 
总计
(Ⅱ)将其中某5名爱看课外书且作文水平好的学生分别编号为1、2、3、4、5,某5名爱看课外书且作文水平一般的学生也分别编号为1、2、3、4、5,从这两组学生中各任选1人进行学习交流,求被选取的两名学生的编号之和为3的倍数或4的倍数的概率.
参考公式:K2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
参考数据:
P(K2≥k00.100.050.0250.0100.0050.001
k02.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设定义在R上的函数f(x)满足f(x)•f(x+2)=10.若f(1)=2,则f(2015)=5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.从装有n+1个球(其中n个白球,1个黑球)的口袋中取出m个球(0<m≤n,m,n∈N),共有$C_{n+1}^m$种取法.在这$C_{n+1}^m$种取法中,可以分成两类:一类是取出的m个球全部为白球,共有$C_1^0•C_n^m$种取法;另一类是取出的m个球有m-1个白球和1个黑球,共有$C_1^1•C_n^{m-1}$种取法.显然$C_1^0•C_n^m+C_1^1•C_n^{m-1}=C_{n+1}^m$,即有等式:$C_n^m+C_n^{m-1}=C_{n+1}^m$成立.试根据上述思想化简下列式子:$C_n^m+C_k^1C_n^{m-1}+C_k^2C_n^{m-2}+…+C_k^k•C_n^{m-k}$=Cn+km

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知△ABC,a=$\sqrt{2}$,b=$\sqrt{6}$,∠A=30°,则c=(  )
A.$\sqrt{2}$B.$\sqrt{2}$或$2\sqrt{2}$C.$2\sqrt{2}$D.均不正确

查看答案和解析>>

同步练习册答案