精英家教网 > 高中数学 > 题目详情
13.已知函数$f(x)=4{sin^2}(\frac{π}{4}+x)-2\sqrt{3}cos2x-1$,且$\frac{π}{4}≤x≤\frac{π}{2}$.
(1)求f(x)的最大值及最小值;
(2)若条件$p:f(x)=4{sin^2}(\frac{π}{4}+x)-2\sqrt{3}cos2x-1,\frac{π}{4}≤x≤\frac{π}{2}$;条件q:|f(x)-m|<2,且p是q的充分条件,求实数m的取值范围.

分析 (1)由题意和三角函数公式化简可得f(x)=4sin(2x-$\frac{π}{3}$)+1,由x的范围可得;
(2)解绝对值不等式可得m-2<f(x)<m+2,由p是q的充分条件可得$\left\{\begin{array}{l}{m+2>5}\\{m-2<3}\end{array}\right.$,解不等式组可得.

解答 解:(1)由题意和三角函数公式化简可得
f(x)=$4×\frac{1-cos(\frac{π}{2}+2x)}{2}$-2$\sqrt{3}$cos2x-1
=-2cos($\frac{π}{2}$+2x)-2$\sqrt{3}$cos2x+1
=2sin2x-2$\sqrt{3}$cos2x+1
=4sin(2x-$\frac{π}{3}$)+1,
∵$\frac{π}{4}≤x≤\frac{π}{2}$,∴$\frac{π}{6}≤2x-\frac{π}{3}≤\frac{2π}{3}$,
由三角函数的最值可得
当2x-$\frac{π}{3}$=$\frac{π}{2}$时,f(x)max=5,
当2x-$\frac{π}{3}$=$\frac{π}{6}$时,f(x)min=3;
(2)∵|f(x)-m|<2,∴m-2<f(x)<m+2,
又∵p是q的充分条件,∴$\left\{\begin{array}{l}{m+2>5}\\{m-2<3}\end{array}\right.$,
解得3<m<5

点评 本题考查三角函数恒等变换以及最值,涉及简易逻辑的应用,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.已知sinx•cosx>0,则x在一或三象限.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知在四棱锥S-ABCD中,四边形ABCD是菱形,SD⊥平面ABCD,P为SB的中点,Q为BD上一动点.AD=2,SD=2,∠DAB=$\frac{π}{3}$.
(Ⅰ)求证:AC⊥PQ;
(Ⅱ)当PQ∥平面SAC时,求四棱锥P-AQCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知任意一个正整数的三次幂均可表示成一些连续奇数的和,如图所示,33可以表示为7+9+11,我们把7,9,11叫做33的“质数因子”,若n3的一个“质数因子”为2013,则n为(  )
A.43B.44C.45D.46

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在平面直角坐标系中,以原点O为极点,x轴的正半轴为极轴建立极坐标系,直线L:ρcosθ-$\sqrt{3}$ρsinθ+1=0,曲线C的参数方程为$\left\{\begin{array}{l}x=5+cosα\\ y=sinα\end{array}\right.$(α为参数).
(Ⅰ)求直线L和曲线C的普通方程;
(Ⅱ)在曲线C上求一点Q,使得Q到直线L的距离最小,并求出这个最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知直线$l:\left\{\begin{array}{l}x=1-\frac{{\sqrt{2}}}{2}t\\ y=2+\frac{{\sqrt{2}}}{2}t\end{array}\right.,(t为参数)$与圆$C:\left\{\begin{array}{l}x=1+\sqrt{2}cosθ\\ y=1+\sqrt{2}sinθ\end{array}\right.,(θ为参数)$,
(1)求证:直线l与圆C相交;
(2)设直线l与圆C相交于A、B两点,又已知点P(m,0),m∈R,求||PA|-|PB||的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若$m=\sqrt{3}+\sqrt{5}$,$n=\sqrt{2}+\sqrt{6}$,则下列结论正确的是(  )
A.m<nB.n<m
C.n=mD.不能确定m,n的大小

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知正数x,y满足x+2y=2,则$\frac{1}{y}$+$\frac{8}{x}$的最小值为9.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.函数$f(x)={log_3}x•{log_3}\frac{x}{9}(x≥1)$的最小值为-1.

查看答案和解析>>

同步练习册答案