精英家教网 > 高中数学 > 题目详情

【题目】在如图所示的几何体中,D是AC的中点,EF∥DB.

(1)已知AB=BC,AE=EC,求证:AC⊥FB;
(2)已知G,H分别是EC和FB的中点,求证:GH∥平面ABC.

【答案】
(1)

证明:如图所示,

∵D是AC的中点,AB=BC,AE=EC,∴△BAC、△EAC都是等腰三角形,

∴BD⊥AC,ED⊥AC.

∵EF∥DB,∴E、F、B、D四点共面,这样,AC垂直于平面EFBD内的两条相交直线ED、BD,

∴AC⊥平面EFBD.

显然,FB平面EFBD,∴AC⊥FB


(2)

解:已知G,H分别是EC和FB的中点,再取CF的中点O,则OG∥EF,∵OG∥BD,

∴OG∥BD,而BD平面ABC,∴OG∥平面ABC.

同理,OH∥BC,而BC平面ABC,∴OH∥平面ABC.

∵OG∩OH=O,∴平面OGH∥平面ABC,∴GH∥平面ABC.


【解析】(1)由条件利用等腰三角形的性质,证得BD⊥AC,ED⊥AC,再利用直线和平面垂直的判定定理证得AC⊥平面EFBD,从而证得AC⊥FB.(2)再取CF的中点O,利用直线和平面平行的判定定理证明 OG∥平面ABC,OH∥平面ABC,可得平面OGH∥平面ABC,从而证得GH∥平面ABC.;本题主要考查直线和平面垂直的判定和性质,直线和平面平行的判定与性质,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某校计划面向高一年级1200名学生开设校本选修课程,为确保工作的顺利实施,先按性别进行分层抽样,抽取了180名学生对社会科学类,自然科学类这两大类校本选修课程进行选课意向调查,其中男生有105人.在这180名学生中选择社会科学类的男生、女生均为45人.
(Ⅰ)分别计算抽取的样本中男生及女生选择社会科学类的频率,并以统计的频率作为概率,估计实际选课中选择社会科学类学生数;
(Ⅱ)根据抽取的180名学生的调查结果,完成下列列联表.并判断能否在犯错误的概率不超过0.025的前提下认为科类的选择与性别有关?

选择自然科学类

选择社会科学类

合计

男生

女生

合计

附: ,其中n=a+b+c+d.

P(K2≥k0

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

K0

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2015·陕西)如图,一横截面为等腰梯形的水渠,因泥沙沉积,导致水渠截面边界呈抛物线型(图中虚线表示),则原始的最大流量与当前最大流量的比值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知m,n是两条不同直线,是两个不同平面,则下列命题正确的是
A.若垂直于同一平面,则平行
B.若m,n平行于同一平面,则m与n平行
C.若不平行,则在内不存在与平行的直线
D.若m,n不平行,则m与n不可能垂直于同一平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,空间四边形ABCD中,AB=CD,AB⊥CD,E、F分别为BC、AD的中点,则EF和AB所成的角为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,g(x)=2x﹣1,则f(g(2))= , f[g(x)]的值域为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: 的离心率为 ,直线l:x+y﹣1=0与C相交于A,B两点.
(1)证明:线段AB的中点为定点,并求出该定点坐标;
(2)设M(1,0), ,当 时,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)= 为奇函数,则a= , f(g(﹣2))=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ,则f(f(3))= , f(x)的单调减区间是

查看答案和解析>>

同步练习册答案